Aplikasi AI Generatif: Mentransformasi Pekerjaan Anda adalah kursus keempat dari jalur pembelajaran Generative AI Leader. Kursus ini memperkenalkan aplikasi AI generatif Google, seperti Gemini untuk Workspace dan NotebookLM. Kursus ini memandu Anda memahami konsep seperti grounding, retrieval augmented generation, menyusun perintah yang efektif, dan membangun alur kerja otomatis.
AI Generatif: Memahami Lanskap adalah kursus ketiga dari alur pembelajaran Generative AI Leader. AI generatif mengubah cara kita bekerja dan berinteraksi dengan dunia di sekitar kita. Namun, sebagai seorang pemimpin, bagaimana Anda dapat memanfaatkan kekuatan AI untuk mendorong hasil bisnis yang nyata? Dalam kursus ini, Anda akan mempelajari berbagai lapisan dalam membangun solusi AI generatif, penawaran Google Cloud, dan faktor yang perlu dipertimbangkan saat memilih solusi.
AI Generatif: Memahami Konsep Dasar adalah kursus kedua dari alur pembelajaran Generative AI Leader. Dalam kursus ini, Anda akan mempelajari konsep dasar AI generatif. Anda akan mempelajari perbedaan antara AI, ML, dan AI generatif serta mempelajari bagaimana berbagai jenis data memungkinkan AI generatif mengatasi tantangan bisnis. Anda juga akan mendapatkan insight tentang strategi Google Cloud untuk mengatasi keterbatasan model dasar dan tantangan utama dalam pengembangan dan deployment AI yang bertanggung jawab dan aman.
AI Generatif: Lebih dari Sekadar Chatbot adalah kursus pertama dari alur pembelajaran Generative AI Leader. Kursus ini tidak memiliki prasyarat. Kursus ini bertujuan untuk melampaui pemahaman dasar tentang chatbot guna mengeksplorasi potensi sebenarnya dari AI generatif untuk organisasi Anda. Anda akan mempelajari konsep seperti model dasar dan rekayasa perintah, yang penting untuk memanfaatkan kekuatan AI generatif. Kursus ini juga memandu Anda melalui pertimbangan penting yang harus Anda buat saat mengembangkan strategi AI generatif yang sukses untuk organisasi Anda.
Complete the Configure AI Applications to optimize search results skill badge to demonstrate your proficiency in configuring search results from AI Applications. You will be tasked with implementing search serving controls to boost and bury results, filter entries from search results and display metadata in your search interface. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Padukan keahlian Google di bidang penelusuran dan AI dengan Agentspace, alat perusahaan yang dirancang untuk membantu karyawan menemukan informasi spesifik dari penyimpanan dokumen, email, chat, sistem tiket, dan sumber data lain, semuanya dari satu kotak penelusuran. Asisten Agentspace juga dapat membantu Anda bertukar pikiran, melakukan riset, membuat kerangka dokumen, serta mengambil tindakan seperti mengundang rekan kerja ke acara kalender untuk mempercepat pekerjaan dan kolaborasi berbasis pengetahuan dalam berbagai bentuk.
This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.
Complete the Create media search and media recommendations applications with AI Applications skill badge to demonstrate your ability to create, configure, and access media search and recommendations applications using AI Applications. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Do you want to keep your users engaged by suggesting content they'll love? This course equips you with the skills to build a cutting-edge recommendations app using your own data with no prior machine learning knowledge. You learn to leverage AI Applications to build recommendation applications so that audiences can discover more personalized content, like what to watch or read next, with Google-quality results customized using optimization objectives.
Complete the Extend Gemini Enterprise Assistant Capabilities skill badge to demonstrate your ability to extend Gemini Enterprise assistant's capabilities with actions, grounding with Google Search, and a conversational agent. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
NotebookLM is an AI-powered collaborator that helps you do your best thinking. After uploading your documents, NotebookLM becomes an instant expert in those sources so you can read, take notes, and collaborate with it to refine and organize your ideas. NotebookLM Pro gives you everything already included with NotebookLM, as well as higher utilization limits, access to premium features, and additional sharing options and analytics.
If you've worked with data, you know that some data is more reliable than other data. In this course, you'll learn a variety of techniques to present the most reliable or useful results to your users. Create serving controls to boost or bury search results. Rank search results to ensure that each query is answered by the most relevant data. If needed, tune your search engine. Learn to measure search results to ensure your search applications deliver the best possible results to each user. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)
AI Applications provides built-in analytics for your Vertex AI Search and Gemini Enterprise apps. Learn what metrics are tracked and how to view them in this course. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)
Initial deployment of Vertex AI Search and Gemini Enterprise apps takes only a few clicks, but getting the configurations right can elevate a deployment from a basic off-the-shelf app to an excellent custom search or recommendations experience. In this course, you'll learn more about the many ways you can customize and improve search, recommendations, and Gemini Enterprise apps. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)
Complete the Build search and recommendations AI Applications skill badge to demonstrate your proficiency in deploying search and recommendation applications through AI Applications. Additionally, emphasis is placed on constructing a tailored Q&A system utilizing data stores. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Complete the Create and maintain Vertex AI Search data stores skill badge to demonstrate your proficiency in building various types of data stores used in Vertex AI Search applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Data stores represent a simple way to make content available to many types of generative AI applications, including search applications, recommendations engines, Gemini Enterprise apps, Agent Development Kit agents, and apps built with Google Gen AI or LangChain SDKs. Connect data from many sources include Cloud Storage, Google Drive, chat apps, mail apps, ticketing systems, third-party file storage providers, Salesforce, and many more.
This course introduces AI Applications. You will learn about the types of apps that you can create using AI Applications, the high-level steps that its data stores automate for you, and what advanced features can be enabled for Search apps. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)
Kursus ini mengeksplorasi Gemini in BigQuery, yakni paket fitur yang didukung AI untuk membantu alur kerja data ke AI. Paket fitur ini meliputi eksplorasi dan persiapan data, pembuatan kode dan pemecahan masalah, serta penemuan dan visualisasi alur kerja. Melalui penjelasan konseptual, kasus penggunaan praktis, dan lab interaktif, kursus ini akan membantu para praktisi data dalam meningkatkan produktivitas mereka dan mempercepat pipeline pengembangan.
Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.
This course explores the Geographic Information Systems (GIS), GIS Visualization, and machine learning enhancements to BigQuery.
This course explores how to implement a streaming analytics solution using Dataflow and BigQuery.
This course explores how to leverage Looker to create data experiences and gain insights with modern business intelligence (BI) and reporting.
This course explores how to implement a streaming analytics solution using Pub/Sub.
This course continues to explore the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Dataflow.
This course continues to explore the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Cloud Data Fusion.
This course identifies best practices for migrating data warehouses to BigQuery and the key skills required to perform successful migration.
This course explores the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Dataproc.
Welcome to Optimize in BigQuery, where we map Enterprise Data Warehouse concepts and components to BigQuery and Google data services with a focus on optimization.
Welcome to Design in BigQuery, where we map Enterprise Data Warehouse concepts and components to BigQuery and Google data services with a focus on schema design.
This course discusses the key elements of Google's Data Warehouse solution portfolio and strategy.
Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
Kursus ini memperkenalkan Vertex AI Studio, sebuah alat untuk berinteraksi dengan model AI generatif, membuat prototipe ide bisnis, dan meluncurkannya ke dalam produksi. Melalui kasus penggunaan yang imersif, pelajaran menarik, dan lab interaktif, Anda akan menjelajahi siklus proses dari perintah ke produk dan mempelajari cara memanfaatkan Vertex AI Studio untuk aplikasi multimodal Gemini, desain perintah, rekayasa perintah, dan tuning model. Tujuan kursus ini adalah agar Anda dapat memanfaatkan potensi AI generatif dalam project Anda dengan Vertex AI Studio.
Selesaikan badge keahlian pengantar Desain Perintah dalam Vertex AI untuk menunjukkan keterampilan Anda dalam hal berikut: rekayasa perintah, analisis gambar, dan teknik generatif multimodal, dalam Vertex AI. Pelajari cara membuat perintah yang efektif, memandu output AI generatif, dan menerapkan model Gemini dalam skenario pemasaran di dunia nyata.
Seiring semakin meningkatnya penggunaan Kecerdasan Buatan dan Machine Learning di kalangan perusahaan, proses membangunnya secara bertanggung jawab juga menjadi semakin penting. Membicarakan responsible AI mungkin lebih mudah bagi banyak orang daripada mempraktikkannya. Jika Anda tertarik untuk mempelajari cara mengoperasionalkan responsible AI dalam organisasi Anda, kursus ini cocok untuk Anda. Dalam kursus ini, Anda akan mempelajari bagaimana Google Cloud mengoperasionalkan responsible AI, dengan praktik terbaik dan pelajaran yang dapat dipetik. Hal ini berguna sebagai framework bagi Anda untuk membangun pendekatan responsible AI.
Ini adalah kursus pengantar pembelajaran mikro yang dimaksudkan untuk menjelaskan responsible AI, alasan pentingnya responsible AI, dan cara Google mengimplementasikan responsible AI dalam produknya. Kursus ini juga memperkenalkan 7 prinsip AI Google.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Jaringan Google Cloud, untuk mempelajari cara menjalankan tugas-tugas networking dasar di Google Cloud Platform, yakni membuat jaringan kustom, menambahkan aturan firewall subnet, lalu membuat VM dan menguji latensi saat VM berkomunikasi satu sama lain.
Selesaikan badge keahlian Membangun Infrastruktur dengan Terraform di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut: Prinsip Infrastruktur sebagai Kode (IaC) menggunakan Terraform, penyediaan dan pengelolaan resource Google Cloud dengan konfigurasi Terraform, pengelolaan status yang efektif (lokal dan jarak jauh), serta modularisasi kode Terraform agar dapat digunakan kembali dan diatur.
Dapatkan badge keahlian dengan menyelesaikan kursus Mengembangkan Jaringan Google Cloud Anda yang berisi pelajaran tentang berbagai cara untuk men-deploy dan memantau aplikasi, termasuk cara: menjelajahi peran IAM dan menambahkan/menghapus akses project, membuat jaringan VPC, men-deploy dan memantau VM Compute Engine, menulis kueri SQL, men-deploy dan memantau VM di Compute Engine, serta men-deploy aplikasi menggunakan Kubernetes dengan beberapa pendekatan deployment.
Businesses are flocking to the cloud, and the demand for skilled professionals is skyrocketing. Join the trend and level up your resume with in-demand skills and earn a Google Cloud Credential to showcase your expertise. No experience necessary – get started today!
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
Hey there! You're invited to game on with the Arcade Trivia for April Week 1! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the April Trivia Week 1 badge!
Kursus ini membekali peserta dengan keterampilan untuk membangun solusi yang sangat andal dan efisien di Google Cloud menggunakan pola desain yang telah terbukti. Kursus ini merupakan kelanjutan dari kursus Membangun dengan Google Compute Engine atau Membangun dengan Google Kubernetes Engine dan memberikan pengalaman interaktif dengan teknologi yang dibahas dalam kursus tersebut. Melalui kombinasi presentasi, aktivitas desain, dan lab interaktif, peserta akan mempelajari cara menentukan serta menyeimbangkan kebutuhan bisnis dan teknis untuk merancang deployment Google Cloud yang sangat andal, sangat tersedia, aman, dan hemat biaya.
Hey there! You're invited to game on with the Arcade Trivia for March Week 4! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the March Trivia Week 4 badge!
Selesaikan badge keahlian tingkat menengah Mengoptimalkan Biaya untuk Google Kubernetes Engine untuk menunjukkan keterampilan dalam hal berikut: membuat dan mengelola cluster multi-tenant, memantau penggunaan resource berdasarkan namespace, mengonfigurasi penskalaan otomatis pada cluster dan pod untuk tujuan efisiensi, menyiapkan load balancing untuk mengoptimalkan distribusi resource, dan menerapkan pemeriksaan keaktifan serta kesiapan untuk memastikan kondisi aplikasi dan efektivitas biaya. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Welcome to the Getting Started with Google Kubernetes Engine course. If you're interested in Kubernetes, a software layer that sits between your applications and your hardware infrastructure, then you’re in the right place! Google Kubernetes Engine brings you Kubernetes as a managed service on Google Cloud. The goal of this course is to introduce the basics of Google Kubernetes Engine, or GKE, as it’s commonly referred to, and how to get applications containerized and running in Google Cloud. The course starts with a basic introduction to Google Cloud, and is then followed by an overview of containers and Kubernetes, Kubernetes architecture, and Kubernetes operations.
Selesaikan pengantar badge keahlian Mengimplementasikan Load Balancing di Compute Engine untuk menunjukkan keterampilan berikut ini: menulis perintah gcloud dan menggunakan Cloud Shell, membuat dan men-deploy virtual machine di Compute Engine, serta mengonfigurasi jaringan dan load balancer HTTP. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan badge keahlian ini, dan penilaian akhir Challenge Lab, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Lingkungan Pengembangan Aplikasi di Google Cloud, yang memungkinkan Anda mempelajari cara membangun dan menghubungkan infrastruktur cloud yang berpusat pada penyimpanan menggunakan kemampuan dasar teknologi berikut: Cloud Storage, Identity and Access Management, Cloud Functions, dan Pub/Sub.
Kursus akselerasi sesuai permintaan ini memperkenalkan peserta pada infrastruktur dan layanan platform yang komprehensif dan fleksibel yang disediakan oleh Google Cloud. Melalui kombinasi video materi edukasi, demo, dan lab interaktif, peserta akan mengeksplorasi dan men-deploy berbagai elemen solusi, termasuk membuat interkoneksi jaringan yang aman, load balancing, penskalaan otomatis, otomatisasi infrastruktur, serta layanan terkelola.
As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Kursus akselerasi sesuai permintaan ini memperkenalkan peserta pada infrastruktur dan layanan platform yang komprehensif dan fleksibel yang disediakan oleh Google Cloud, dengan fokus pada Compute Engine. Melalui kombinasi video materi edukasi, demo, dan lab praktis, peserta akan mengeksplorasi dan men-deploy berbagai elemen solusi, termasuk komponen infrastruktur seperti jaringan, sistem, dan layanan aplikasi. Kursus ini juga membahas cara men-deploy solusi praktis termasuk kunci enkripsi yang disediakan pelanggan, pengelolaan keamanan dan akses, kuota dan penagihan, serta pemantauan resource.
Kursus akselerasi sesuai permintaan ini memperkenalkan peserta pada infrastruktur dan layanan platform yang komprehensif dan fleksibel yang disediakan oleh Google Cloud, dengan fokus pada Compute Engine. Melalui kombinasi video materi edukasi, demo, dan lab interaktif, peserta akan mengeksplorasi dan men-deploy berbagai elemen solusi, termasuk komponen infrastruktur seperti jaringan, virtual machine, dan layanan aplikasi. Anda akan mempelajari cara menggunakan Google Cloud melalui konsol dan Cloud Shell. Anda juga akan mempelajari peran arsitek cloud, pendekatan desain infrastruktur, dan konfigurasi networking virtual dengan Virtual Private Cloud (VPC), Project, Jaringan, Subnetwork, alamat IP, Rute, dan Aturan firewall.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Dasar-Dasar Google Cloud: Infrastruktur Inti memperkenalkan konsep dan terminologi penting untuk bekerja dengan Google Cloud. Melalui video dan lab interaktif, kursus ini menyajikan dan membandingkan banyak layanan komputasi dan penyimpanan Google Cloud, bersama dengan resource penting dan alat pengelolaan kebijakan.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.
This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.
Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Selesaikan badge keahlian tingkat menengah Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML untuk menunjukkan keterampilan Anda dalam hal berikut: membangun pipeline transformasi data ke BigQuery dengan Dataprep by Trifacta; menggunakan Cloud Storage, Dataflow, dan BigQuery untuk membangun alur kerja ekstrak, transformasi, dan pemuatan (ETL); serta membangun model machine learning menggunakan BigQuery ML.
Selesaikan badge keahlian tingkat menengah Membangun Data Warehouse dengan BigQuery untuk menunjukkan keterampilan Anda dalam hal berikut: menggabungkan data untuk membuat tabel baru, memecahkan masalah penggabungan, menambahkan data dengan union, membuat tabel berpartisi tanggal, serta menggunakan JSON, array, dan struct di BigQuery. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.
In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.
In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.