Join Sign in

Wladimir Andres Zavalla Veliz (LATAM)

Member since 2023

Cloud Hero Data II Skills Earned أغسطس 28, 2025 EDT
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned أكتوبر 1, 2024 EDT
Develop Advanced Enterprise Search and Conversation Applications Earned سبتمبر 22, 2024 EDT
Building Batch Data Pipelines on Google Cloud Earned سبتمبر 20, 2024 EDT
Serverless Data Processing with Dataflow: Operations Earned سبتمبر 20, 2024 EDT
Serverless Data Processing with Dataflow: Foundations Earned سبتمبر 17, 2024 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned سبتمبر 16, 2024 EDT
Building Resilient Streaming Analytics Systems on Google Cloud Earned سبتمبر 15, 2024 EDT
Orchestrate LLM solutions with LangChain Earned سبتمبر 11, 2024 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned سبتمبر 9, 2024 EDT
Preparing for your Professional Data Engineer Journey Earned سبتمبر 8, 2024 EDT
Text Prompt Engineering Techniques Earned سبتمبر 5, 2024 EDT
Implementing Generative AI with Vertex AI Earned سبتمبر 3, 2024 EDT
Introduction to Vertex AI Studio Earned سبتمبر 3, 2024 EDT
Create Image Captioning Models Earned سبتمبر 3, 2024 EDT
Transformer Models and BERT Model Earned سبتمبر 2, 2024 EDT
Encoder-Decoder Architecture Earned سبتمبر 2, 2024 EDT
Attention Mechanism Earned سبتمبر 1, 2024 EDT
Introduction to Image Generation Earned سبتمبر 1, 2024 EDT
Responsible AI: Applying AI Principles with Google Cloud Earned سبتمبر 1, 2024 EDT
Generative AI Fundamentals Earned أغسطس 31, 2024 EDT
Introduction to Responsible AI Earned أغسطس 30, 2024 EDT
Introduction to Large Language Models Earned أغسطس 30, 2024 EDT
Use Machine Learning APIs on Google Cloud Earned أغسطس 30, 2024 EDT
Machine Learning Operations (MLOps): Getting Started Earned أغسطس 24, 2024 EDT
How Google Does Machine Learning Earned أغسطس 23, 2024 EDT
Introduction to Generative AI Earned أغسطس 20, 2024 EDT
Data Analytics Earned يوليو 25, 2024 EDT
Cloud Hero Looker Skills Earned يونيو 24, 2024 EDT
Cloud Hero: Data Management Earned مايو 16, 2024 EDT
Analysis & Visualization Earned أبريل 18, 2024 EDT
BigQuery for Data Analysis I Earned مارس 21, 2024 EDT
Cloud Hero Kubernetes Skills Earned مايو 18, 2023 EDT

Master Google Cloud skills through hands-on labs and friendly competition! Cloud Hero challenges you to conquer a series of Cloud Skills Boost labs, putting your newfound knowledge to practice. Earn points for completing labs accurately, and rack up bonus points for speed. The leaderboard lets you see how you stack up against your peers – can you rise to the top? Remember to click "End" after finishing each lab to claim your well-deserved points.

Learn more

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

Learn more

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

Learn more

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Learn more

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

Learn more

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Learn more

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Learn more

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

Learn more

Learn to use LangChain to call Google Cloud LLMs and Generative AI Services and Datastores to simplify complex applications' code.

Learn more

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Learn more

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Learn more

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

Learn more

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

Learn more

This course introduces Vertex AI Studio, a tool to interact with generative AI models, prototype business ideas, and launch them into production. Through an immersive use case, engaging lessons, and a hands-on lab, you’ll explore the prompt-to-product lifecycle and learn how to leverage Vertex AI Studio for Gemini multimodal applications, prompt design, prompt engineering, and model tuning. The aim is to enable you to unlock the potential of gen AI in your projects with Vertex AI Studio.

Learn more

This course teaches you how to create an image captioning model by using deep learning. You learn about the different components of an image captioning model, such as the encoder and decoder, and how to train and evaluate your model. By the end of this course, you will be able to create your own image captioning models and use them to generate captions for images

Learn more

This course introduces you to the Transformer architecture and the Bidirectional Encoder Representations from Transformers (BERT) model. You learn about the main components of the Transformer architecture, such as the self-attention mechanism, and how it is used to build the BERT model. You also learn about the different tasks that BERT can be used for, such as text classification, question answering, and natural language inference.This course is estimated to take approximately 45 minutes to complete.

Learn more

This course gives you a synopsis of the encoder-decoder architecture, which is a powerful and prevalent machine learning architecture for sequence-to-sequence tasks such as machine translation, text summarization, and question answering. You learn about the main components of the encoder-decoder architecture and how to train and serve these models. In the corresponding lab walkthrough, you’ll code in TensorFlow a simple implementation of the encoder-decoder architecture for poetry generation from the beginning.

Learn more

This course will introduce you to the attention mechanism, a powerful technique that allows neural networks to focus on specific parts of an input sequence. You will learn how attention works, and how it can be used to improve the performance of a variety of machine learning tasks, including machine translation, text summarization, and question answering. This course is estimated to take approximately 45 minutes to complete.

Learn more

This course introduces diffusion models, a family of machine learning models that recently showed promise in the image generation space. Diffusion models draw inspiration from physics, specifically thermodynamics. Within the last few years, diffusion models became popular in both research and industry. Diffusion models underpin many state-of-the-art image generation models and tools on Google Cloud. This course introduces you to the theory behind diffusion models and how to train and deploy them on Vertex AI.

Learn more

As the use of enterprise Artificial Intelligence and Machine Learning continues to grow, so too does the importance of building it responsibly. A challenge for many is that talking about responsible AI can be easier than putting it into practice. If you’re interested in learning how to operationalize responsible AI in your organization, this course is for you. In this course, you will learn how Google Cloud does this today, together with best practices and lessons learned, to serve as a framework for you to build your own responsible AI approach.

Learn more

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

Learn more

This is an introductory-level microlearning course aimed at explaining what responsible AI is, why it's important, and how Google implements responsible AI in their products. It also introduces Google's 3 AI principles.

Learn more

This is an introductory level micro-learning course that explores what large language models (LLM) are, the use cases where they can be utilized, and how you can use prompt tuning to enhance LLM performance. It also covers Google tools to help you develop your own Gen AI apps.

Learn more

Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.

Learn more

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Learn more

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

Learn more

This is an introductory level microlearning course aimed at explaining what Generative AI is, how it is used, and how it differs from traditional machine learning methods. It also covers Google Tools to help you develop your own Gen AI apps.

Learn more

Welcome Gamers! In this game you will query public tables and load sample data into BigQuery using the Web UI, learn to use BigQuery on data, learn how to build a BI dashboard with Looker Studio as the front end, powered by BigQuery on the back end, and explore existing datasets with Data Catalog. You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.

Learn more

Welcome Gamers! Learn fundamentals of Google Cloud's Looker, all while having fun! Looker is a modern data platform in Google Cloud that allows you to analyze and visualize your data interactively. You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.

Learn more

In this game you will set up a virtual machine to process and publish earthquake data, build a data transformation pipeline and output results into BigQuery, ingest new datasets into tables, and build data pipelines that will ingest data from a publicly available dataset into BigQuery.

Learn more

Welcome Gamers! Learn to analyze data and visualize your data through attractive, dynamic, and interactive reports, all while having fun! Create visually compelling reports and dashboards. You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.

Learn more

Welcome Gamers! Learn BigQuery and Cloud SQL, all while having fun! You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.

Learn more

Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Speed and accuracy will be used to calculate your scores — earn points by completing the labs accurately and bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.

Learn more