Dibbendu Das
Participante desde 2022
Liga Bronze
6615 pontos
Participante desde 2022
This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.
Neste curso, ensinamos a criar um modelo de legenda para imagens usando aprendizado profundo. Você vai aprender sobre os diferentes componentes de um modelo de legenda para imagens, como o codificador e decodificador, e de que forma treinar e avaliar seu modelo. Ao final deste curso, você será capaz de criar e usar seus próprios modelos de legenda para imagens.
Neste curso, vamos conhecer o Vertex AI Studio, uma ferramenta para interagir com modelos de IA generativa, prototipar ideias comerciais e colocá-las em produção. Com a ajuda de um caso de uso imersivo, lições interessantes e um laboratório, você vai conhecer o ciclo de vida do comando à produção, além de usar o Vertex AI Studio para aplicativos multimodais do Gemini, design e engenharia de comandos e ajuste de modelos. O objetivo é permitir que você descubra todo o potencial da IA generativa nos seus projetos com o Vertex AI Studio.
Este curso apresenta um resumo da arquitetura de codificador-decodificador, que é uma arquitetura de machine learning avançada e frequentemente usada para tarefas sequência para sequência (como tradução automática, resumo de textos e respostas a perguntas). Você vai conhecer os principais componentes da arquitetura de codificador-decodificador e aprender a treinar e disponibilizar esses modelos. No tutorial do laboratório relacionado, você vai codificar uma implementação simples da arquitetura de codificador-decodificador para geração de poesia desde a etapa inicial no TensorFlow.
Quanto maior é o uso da inteligência artificial empresarial e do machine learning, mais importante é desenvolvê-los de maneira responsável. Para muitos, falar sobre a IA responsável pode ser mais fácil, mas colocá-la em prática é um desafio. Se você tem interesse em aprender a operacionalizar a IA responsável na sua organização, este curso é para você. Nele, você vai aprender como o Google Cloud faz isso hoje, além de analisar práticas recomendadas e lições aprendidas, a fim de criar uma base para elaborar sua própria abordagem de IA responsável.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.
"Planning for a Google Workspace Deployment" é o último curso da série "Google Workspace Administration". Aqui, você conhecerá a metodologia e as práticas recomendadas de implantação do Google. Você vai acompanhar a jornada de Catarina e Marcos, que vão planejar uma implantação do Google Workspace na Cymbal. O foco deles serão as principais áreas de provisionamento de um projeto técnico, fluxo de e-mails, migração de dados e coexistência, além de pensar na melhor estratégia de implantação para cada área. Você também vai conhecer a importância da gestão da mudança em uma implantação do Google Workspace. Com ela, os usuários fazem uma transição tranquila para o Workspace e recebem os benefícios da transformação do trabalho com comunicações, suporte e treinamento. O curso aborda tópicos teóricos e não tem exercícios práticos. Se você ainda não cancelou seu teste do Google Workspace, faça isso agora para evitar cobranças indesejadas.
Neste curso, os estudantes vão aprender a proteger o ambiente do Google Workspace. Vamos começar pela implementação das políticas de senha forte e verificação em duas etapas para controlar o acesso dos usuários. Em seguida, usaremos a ferramenta de investigação de segurança para identificar e responder a riscos de segurança de forma proativa. Depois, os estudantes vão gerenciar o acesso a apps de terceiros e dispositivos móveis para garantir a segurança. Por fim, vamos aplicar medidas de segurança e compliance em e-mails para proteger os dados organizacionais.
Este curso oferece aos estudantes amplo conhecimento sobre os serviços principais do Google Workspace. Vamos ensinar a ativar, desativar e definir configurações para esses serviços, incluindo Gmail, Agenda, Drive, Meet, Chat e Documentos. Em seguida, os estudantes verão como implantar e gerenciar o Gemini para os usuários acessarem os recursos. Por fim, vamos analisar casos de uso do AppSheet e do Apps Script para saber como eles automatizam tarefas e ampliam a funcionalidade dos aplicativos do Google Workspace.
Neste curso, os estudantes vão aprender a controlar os dados no ambiente do Google Workspace. Vamos começar pelas regras da Prevenção contra Perda de Dados no Gmail e no Drive para evitar o vazamento de dados. Depois, os estudantes verão como usar o Google Vault na retenção, preservação e recuperação de dados. Em seguida, vamos configurar regiões de dados e exportações de acordo com as regulamentações. Por fim, os estudantes vão classificar dados usando marcadores para aprimorar a organização e a segurança.
Este curso foi criado para ajudar a entender como os usuários e recursos são gerenciados no Workspace. Os estudantes vão conhecer a configuração de unidades organizacionais e como ela pode ser adaptada às demandas das organizações em que trabalham. Além disso, os estudantes vão aprender a gerenciar vários tipos de grupos do Google. O curso também vai mostrar como gerenciar as configurações de domínios no Google Workspace. Por fim, os estudantes aprenderão a otimizar e estruturar recursos no seu ambiente do Google Workspace.
Neste curso, apresentamos os modelos de difusão, uma família de modelos de machine learning promissora no campo da geração de imagens. Os modelos de difusão são baseados na física, mais especificamente na termodinâmica. Nos últimos anos, eles se popularizaram no setor e nas pesquisas. Esses modelos servem de base para ferramentas e modelos avançados de geração de imagem no Google Cloud. Este curso é uma introdução à teoria dos modelos de difusão e como eles devem ser treinados e implantados na Vertex AI.
Este curso é uma introdução à arquitetura de transformador e ao modelo de Bidirectional Encoder Representations from Transformers (BERT, na sigla em inglês). Você vai aprender sobre os principais componentes da arquitetura de transformador, como o mecanismo de autoatenção, e como eles são usados para construir o modelo de BERT. Também vai conhecer as diferentes tarefas onde é possível usar o BERT, como classificação de texto, respostas a perguntas e inferência de linguagem natural. O curso leva aproximadamente 45 minutos.
Este curso é uma introdução ao mecanismo de atenção, uma técnica avançada que permite que as redes neurais se concentrem em partes específicas de uma sequência de entrada. Você vai entender como a atenção funciona e como ela pode ser usada para melhorar o desempenho de várias tarefas de machine learning (como tradução automática, resumo de texto e resposta a perguntas).
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.
"Noções básicas do Google Cloud: infraestrutura principal" é uma apresentação da terminologia e de conceitos importantes para trabalhar com o Google Cloud. Usando vídeos e laboratórios práticos, o curso apresenta e compara vários serviços de armazenamento e computação do Google Cloud, além de ferramentas importantes para o gerenciamento de políticas e recursos.