Unirse Acceder

Abhijna D V

Miembro desde 2022

Liga de Diamantes

48005 puntos
Explora la transformación de datos con Google Cloud Earned ene 27, 2025 EST
Microsoft SQL Server to Cloud SQL Earned ene 27, 2025 EST
Creación de sistemas de analíticas en tiempo real resilientes en Google Cloud Earned ene 27, 2025 EST
Creación de flujos de procesamiento de datos por lotes en Google Cloud Earned ene 27, 2025 EST
Oracle to Cloud Spanner Earned dic 10, 2024 EST
MySQL to Cloud Spanner Earned dic 10, 2024 EST
Redshift to BigQuery Earned dic 9, 2024 EST
Snowflake to BigQuery Migration Earned dic 9, 2024 EST
Exploring and Preparing Your Data with BigQuery - Español Earned dic 9, 2024 EST
Data Warehousing for Partners: Enable Google Cloud Customers Earned dic 5, 2024 EST
Data Warehousing for Partners: Process Data with Dataflow Earned dic 5, 2024 EST
Data Warehousing for Partners: Stream Data with Pub/Sub Earned dic 5, 2024 EST
Data Warehousing for Partners: Streaming Analytics Earned dic 5, 2024 EST
Data Warehousing for Partners: BigQuery Extended Capabilities Earned dic 4, 2024 EST
Data Warehousing for Partners: Analyze Data with Looker Earned dic 3, 2024 EST
Data Lake Modernization on Google Cloud: Intro to Data Lakes Earned dic 2, 2024 EST
Data Lake Modernization on Google Cloud: Migrate Workflows Earned dic 2, 2024 EST
Data Lake Modernization on Google Cloud: Data Governance Earned dic 2, 2024 EST
Teradata to BigQuery Earned nov 27, 2024 EST
BigQuery Migration Service Earned nov 27, 2024 EST
BigQuery Fundamentals for Snowflake Professionals Earned nov 26, 2024 EST
Data Warehousing for Partners: Data Warehouse Migration with BigQuery Earned nov 26, 2024 EST
Data Warehousing for Partners: Migrate Data to BigQuery Earned nov 25, 2024 EST
Oracle to BigQuery Migration Earned nov 25, 2024 EST
Cloudera to Google Cloud Earned jun 17, 2024 EDT
BigQuery Fundamentals for Redshift Professionals Earned may 17, 2024 EDT
Operaciones de aprendizaje automático (MLOps): Primeros pasos Earned mar 4, 2024 EST
Creación de modelos de generación de subtítulos de imágenes Earned mar 4, 2024 EST
Data Warehousing for Partners: Design in BigQuery Earned feb 28, 2024 EST
BigQuery Fundamentals for Teradata Professionals Earned feb 28, 2024 EST
Document AI Earned feb 27, 2024 EST
Smart Analytics, Machine Learning, and AI on Google Cloud - Español Earned feb 27, 2024 EST
IA responsable: Aplica los principios de la IA con Google Cloud Earned feb 27, 2024 EST
Virtual Agent Development in Dialogflow CX for Citizen Devs Earned feb 27, 2024 EST
Virtual Agent Development in Dialogflow CX for Software Devs Earned feb 23, 2024 EST
CCAI Operations and Implementation Earned feb 21, 2024 EST
Virtual Agent Development in Dialogflow ES for Citizen Devs Earned feb 20, 2024 EST
Virtual Agent Development in Dialogflow ES for Software Devs Earned feb 19, 2024 EST
Contact Center AI: Conversational Design Fundamentals Earned feb 19, 2024 EST
BI Reporting: Looker Visualization on BigQuery Earned feb 19, 2024 EST
BigQuery Fundamentals for Oracle Professionals Earned feb 16, 2024 EST
Analyzing and Visualizing Data the Google Way Earned feb 13, 2024 EST
Data Warehousing for Partners: Cloud Data Fusion Pipelines Earned oct 30, 2023 EDT
Data Warehousing for Partners: Process Data with Dataproc Earned sep 24, 2023 EDT
Data Warehousing for Partners: Optimize in BigQuery Earned sep 9, 2023 EDT
Modernización de data lakes y almacenes de datos con Google Cloud Earned sep 20, 2022 EDT
Analyzing and Visualizing Data in Looker Earned ago 28, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Español Earned ago 22, 2022 EDT

La tecnología de Cloud puede aportar un gran valor a una organización y, si la combinamos con datos, podemos generar aún más valor y crear nuevas experiencias para los clientes.En “Explora la transformación de datos con Google Cloud”, se explora el valor que los datos pueden aportar a una organización y las formas en que Google Cloud puede hacer que estos sean útiles y accesibles.Como parte de la ruta de aprendizaje de Líder digital de Cloud, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.

Más información

This course aims to upskill Google Cloud partners to perform specific tasks of migrating data from Microsoft SQL Server to CloudSQL using the built-in replication capabilities of SQL Server. Sample data will be used during the migration. Learners will complete several labs that focus on the process of transferring schema, data, and related processes to corresponding Google Cloud products. One or more challenge labs will test the learner's understanding of the topics.

Más información

El procesamiento de datos de transmisión es cada vez más popular, puesto que permite a las empresas obtener métricas en tiempo real sobre las operaciones comerciales. Este curso aborda cómo crear canalizaciones de datos de transmisión en Google Cloud. Pub/Sub se describe para manejar los datos de transmisión entrantes. El curso también aborda cómo aplicar agregaciones y transformaciones a los datos de transmisión con Dataflow y cómo almacenar los registros procesados en BigQuery o Bigtable para analizarlos. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos de transmisión en Google Cloud con QwikLabs.

Más información

Las canalizaciones de datos suelen realizarse según uno de los paradigmas extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, grafos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.

Más información

Migration from Oracle to Cloud Spanner using HarbourBridge. This course describes an example scenario that uses sample data during the migration. This process includes using HarbourBridge for Assessment, Schema Conversion, Schema Transformation, Data Migration, and supporting tools for data validation.

Más información

Migration from MySQL to Cloud Spanner using Dataflow that includes sample mock data and all necessary steps with initial assessment to validation including taking care of migrating users and grants.

Más información

This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks for migrating data from AWS Redshift to BigQuery using BigQuery Data Transfer Service, which includes sample mock data. Learners will complete a challenge lab that focuses on the process of transferring both schema and data from a Redshift data warehouse to BigQuery.

Más información

This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating data from Snowflake to BigQuery. Sample data will be used during the migration. Learners will complete several labs that focus on the process of transferring schema, data and related processes to corresponding Google Cloud products.There will be one or more challenge labs that will test the learners' understanding of the topics. "This learning path aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating data from Snowflake to BigQuery.

Más información

En este curso, veremos cuáles son los desafíos comunes a los que se enfrentan los analistas de datos y cómo resolverlos con las herramientas de macrodatos en Google Cloud. Aprenderás algunos conceptos de SQL y adquirirás conocimientos sobre el uso de BigQuery y Dataprep para analizar y transformar conjuntos de datos. Este es el primer curso de la serie From Data to Insights with Google Cloud. Después de completarlo, inscríbete en el curso Creating New BigQuery Datasets and Visualizing Insights.

Más información

This course discusses the key elements of Google's Data Warehouse solution portfolio and strategy.

Más información

This course continues to explore the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Dataflow.

Más información

This course explores how to implement a streaming analytics solution using Pub/Sub.

Más información

This course explores how to implement a streaming analytics solution using Dataflow and BigQuery.

Más información

This course explores the Geographic Information Systems (GIS), GIS Visualization, and machine learning enhancements to BigQuery.

Más información

This course explores how to leverage Looker to create data experiences and gain insights with modern business intelligence (BI) and reporting.

Más información

Welcome to Intro to Data Lakes, where we discuss how to create a scalable and secure data lake on Google Cloud that allows enterprises to ingest, store, process, and analyze any type or volume of full fidelity data.

Más información

Welcome to Migrate Workflows, where we discuss how to migrate Spark and Hadoop tasks and workflows to Google Cloud.

Más información

Welcome to Data Governance, where we discuss how to implement data governance on Google Cloud.

Más información

This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of Migration from Teradata to BigQuery using the Data Transfer Service and the Teradata TPT Export Utility. Sample Data will be used during both methods. Learners will complete a challenge lab that focuses on the process of transferring both schema, data and SQL from a Teradata data warehouse to BigQuery.

Más información

In this course, you explore the four components that make up the BigQuery Migration Service. They are Migration Assessment, SQL Translation, Data Transfer Service, and Data Validation. You will use each of these tools to perform a migration using to BigQuery.

Más información

This course covers BigQuery fundamentals for professionals who are familiar with SQL-based cloud data warehouses in Snowflake and want to begin working in BigQuery. Through interactive lecture content and hands-on labs, you learn how to provision resources, create and share data assets, ingest data, and optimize query performance in BigQuery. Drawing upon your knowledge of Snowflake, you also learn about similarities and differences between Snowflake and BigQuery to help you get started with data warehouses in BigQuery. After this course, you can continue your BigQuery journey by completing the skill badge quest titled Build and Optimize Data Warehouses with BigQuery.

Más información

In this course, you will receive technical training for Enterprise Data Warehouses solutions using BigQuery based on the best practices developed internally by Google’s technical sales and services organizations. The course will also provide guidance and training on key technical challenges that can arise when migrating existing Enterprise Data Warehouses and ETL pipelines to Google Cloud. You will get hands-on experience with real migration tasks, such as data migration, schema optimization, and SQL Query conversion and optimization. The course will also cover key aspects of ETL pipeline migration to Dataproc as well as using Pub/Sub, Dataflow, and Cloud Data Fusion, giving you hands-on experience using all of these tools for Data Warehouse ETL pipelines.

Más información

This course identifies best practices for migrating data warehouses to BigQuery and the key skills required to perform successful migration.

Más información

Perform a migration from Oracle to BigQuery using SQL Translation and DataFlow using Sample Data. Learners will complete a quiz that focuses on the process of transferring both schema and data from an Oracle enterprise data warehouse to BigQuery.

Más información

This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating data from five products hosted on Cloudera or Hortonworks to corresponding Google Cloud services and hosted products. The migration solutions addressed will be: HDFS data to Google Cloud Dataproc and Cloud Storage Hive data to Cloud Dataproc and the Cloud Dataproc Metastore Hive data to Google Cloud BigQuery Impala data to Google Cloud BigQuery HBase to Google Cloud Bigtable Sample data will be used during all five migrations. Learners will complete several labs that focus on the process of transferring schema, data and related processes to corresponding Google Cloud products.There will be one or more challenge labs that will test the learners understanding of the topics.

Más información

This course covers BigQuery fundamentals for professionals who are familiar with SQL-based cloud data warehouses in Redshift and want to begin working in BigQuery. Through interactive lecture content and hands-on labs, you learn how to provision resources, create and share data assets, ingest data, and optimize query performance in BigQuery. Drawing upon your knowledge of Redshift, you also learn about similarities and differences between Redshift and BigQuery to help you get started with data warehouses in BigQuery. After this course, you can continue your BigQuery journey by completing the skill badge quest titled Build and Optimize Data Warehouses with BigQuery.

Más información

En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.

Más información

En este curso, se te enseña a crear un modelo de generación de leyendas de imágenes con el aprendizaje profundo. Aprenderás sobre los distintos componentes de los modelos de generación de leyendas de imágenes, como el codificador y el decodificador, y cómo entrenar y evaluar tu modelo. Al final del curso, podrás crear tus propios modelos y usarlos para generar leyendas de imágenes.

Más información

Welcome to Design in BigQuery, where we map Enterprise Data Warehouse concepts and components to BigQuery and Google data services with a focus on schema design.

Más información

This course covers BigQuery fundamentals for professionals who are familiar with SQL-based cloud data warehouses in Teradata and want to begin working in BigQuery. Through interactive lecture content and hands-on labs, you learn how to provision resources, create and share data assets, ingest data, and optimize query performance in BigQuery. Drawing upon your knowledge of Teradata, you also learn about similarities and differences between Teradata and BigQuery to help you get started with data warehouses in BigQuery. After this course, you can continue your BigQuery journey by completing the skill badge quest titled Build and Optimize Data Warehouses with BigQuery.

Más información

This course provides partners the skills required to scope, design and deploy Document AI solutions for enterprise customers utilizing use-cases from both the procurement and lending arenas.

Más información

La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.

Más información

A medida que aumenta el uso empresarial de la inteligencia artificial y el aprendizaje automático, también crece la importancia de implementarlo responsablemente. El desafío para muchas personas es que hablar sobre la IA responsable puede ser más fácil que aplicarla. Si te interesa aprender cómo poner en funcionamiento la IA responsable en tu organización, este curso es para ti. En este curso, aprenderás cómo Google Cloud aplica estos principios en la actualidad, junto con las prácticas recomendadas y las lecciones aprendidas, para usarlos como marco de trabajo de modo que puedas crear tu propio enfoque de IA responsable.

Más información

Welcome to "Virtual Agent Development in Dialogflow CX for Citizen Devs", the second course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to adding voice (telephony) as a communication channel to your virtual agent conversations using Dialogflow CX.

Más información

Welcome to "Virtual Agent Development in Dialogflow CX for Software Devs", the third course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop more customized customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to more advanced and customized handling for virtual agent conversations that need to look up and convey dynamic data, and methods available to you for testing your virtual agent and logs which can be useful for understanding issues that arise. This is an intermediate course, intended for learners with the following type of role: Software developers: Codes computer software in a programming language (e.g., C++, Python, Javascript) and often using an SDK/API.

Más información

Welcome to "CCAI Operations and Implementation", the fourth course in the "Customer Experiences with Contact Center AI" series. In this course, learn some best practices for integrating conversational solutions with your existing contact center software, establishing a framework for human agent assistance, and implementing solutions securely and at scale. In this course, you'll be introduced to Agent Assist and the technology it uses so you can delight your customers with the efficiencies and accuracy of services provided when customers require human agents, connectivity protocols, APIs, and platforms which you can use to create an integration between your virtual agent and the services already established for your business, Dialogflow's Environment Management tool for deployment of different versions of your virtual agent for various purposes, compliance measures and regulations you should be aware of when bringing your virtual agent to production, and you'll be given tips from virtua…

Más información

Welcome to "Virtual Agent Development in Dialogflow ES for Citizen Devs", the second course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will use Dialogflow ES to create virtual agents and test them using the Dialogflow ES simulator. This course also provides best practices on developing virtual agents. You will also be introduced to adding voice (telephony) as a communication channel to your virtual agent conversations. Through a combination of presentations, demos, and hands-on labs, participants learn how to create virtual agents. This is an intermediate course, intended for learners with the following types of roles: Conversational designers: Designs the user experience of a virtual assistant. Translates the brand's business requirements into natural dialog flows. Citizen developers: Creates new business applications fo…

Más información

Welcome to "CCAI Virtual Agent Development in Dialogflow ES for Software Developers", the third course in the "Customer Experiences with Contact Center AI" series. In this course, learn to use additional features of Dialogflow ES for your virtual agent, create a Firestore instance to store customer data, and implement cloud functions that access the data. With the ability to read and write customer data, learner’s virtual agents are conversationally dynamic and able to defer contact center volume from human agents. You'll be introduced to methods for testing your virtual agent and logs which can be useful for understanding issues that arise. Lastly, learn about connectivity protocols, APIs, and platforms for integrating your virtual agent with services already established for your business.

Más información

Welcome to "CCAI Conversational Design Fundamentals", the first course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to design customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will be introduced to CCAI and its three pillars (Dialogflow, Agent Assist, and Insights), and the concepts behind conversational experiences and how the study of them influences the design of your virtual agent. After taking this course you will be prepared to take your virtual agent design to the next level of intelligent conversation.

Más información

This workload aims to upskill Google Cloud partners to perform specific tasks for modernization using LookML on BigQuery. A proof-of-concept will take learners through the process of creating LookML visualizations on BigQuery. During this course, learners will be guided specifically on how to write Looker modeling language, also known as LookML and create semantic data models, and learn how LookML constructs SQL queries against BigQuery. At a high level, this course will focus on basic LookML to create and access BigQuery objects, and optimize BigQuery objects with LookML.

Más información

This course covers BigQuery fundamentals for professionals who are familiar with SQL-based cloud data warehouses in Oracle and want to begin working in BigQuery. Through interactive lecture content and hands-on labs, you learn how to provision resources, create and share data assets, ingest data, and optimize query performance in BigQuery. Drawing upon your knowledge of Oracle, you also learn about similarities and differences between Oracle and BigQuery to help you get started with data warehouses in BigQuery. After this course, you can continue your BigQuery journey by completing the skill badge quest titled Build and Optimize Data Warehouses with BigQuery.

Más información

This learning experience guides you through the process of utilizing various data sources and multiple Google Cloud products (including BigQuery and Google Sheets using Connected Sheets) to analyze, visualize, and interpret data to answer specific questions and share insights with key decision makers.

Más información

This course continues to explore the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Cloud Data Fusion.

Más información

This course explores the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Dataproc.

Más información

Welcome to Optimize in BigQuery, where we map Enterprise Data Warehouse concepts and components to BigQuery and Google data services with a focus on optimization.

Más información

Los dos componentes clave de cualquier canalización de datos son los data lakes y los almacenes de datos. En este curso, se destacan los casos de uso de cada tipo de almacenamiento y se analizan en profundidad las soluciones de data lakes y almacenes disponibles en Google Cloud con detalles técnicos. Además, en este curso, se describen el rol del ingeniero en datos, los beneficios de las canalizaciones de datos exitosas para las operaciones comerciales y por qué la ingeniería de datos debe realizarse en un entorno de nube. Este el primer curso de la serie Ingeniería de datos en Google Cloud. Después de completar este curso, inscríbete en el curso Creación de flujos de procesamiento de datos por lotes en Google Cloud.

Más información

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

Más información

En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.

Más información