This lab tests your ability to develop a real-world Generative AI Q&A solution using a RAG framework. You will use Firestore as a vector database and deploy a Flask app as a user interface to query a food safety knowledge base.
Complete the Build search and recommendations AI Applications skill badge to demonstrate your proficiency in deploying search and recommendation applications through AI Applications. Additionally, emphasis is placed on constructing a tailored Q&A system utilizing data stores. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
In this course, you’ll learn to use the Google Agent Development Kit to build complex, multi-agent systems. You will build agents equipped with tools, and connect them with parent-child relationships and flows to define how they interact. You’ll run your agents locally and deploy them to Vertex AI Agent Engine to run as a managed agentic flow, with infrastructure decisions and resource scaling handled by Agent Engine. Please note these labs are based off a pre-released version of this product. There may be some lag on these labs as we provide maintenance updates.
Padukan keahlian Google di bidang penelusuran dan AI dengan Agentspace, alat perusahaan yang dirancang untuk membantu karyawan menemukan informasi spesifik dari penyimpanan dokumen, email, chat, sistem tiket, dan sumber data lain, semuanya dari satu kotak penelusuran. Asisten Agentspace juga dapat membantu Anda bertukar pikiran, melakukan riset, membuat kerangka dokumen, serta mengambil tindakan seperti mengundang rekan kerja ke acara kalender untuk mempercepat pekerjaan dan kolaborasi berbasis pengetahuan dalam berbagai bentuk.
Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.
Get hands-on with the Gemini Pro and Gemini Pro Vision models through our new labs. This course gives you a unique chance to explore these powerful AI tools while our training content is still in development. Learn to interact with the models using the Vertex AI Gemini API and cURL commands, and help us create the best possible learning experience around this technology. Important Disclaimer: Please note that these labs are under active development. Functionality may occasionally change or break unexpectedly, and content might be removed or altered without notice. By proceeding with this course, you acknowledge this potential disruption.
This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.
This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.
(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.
In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.
Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud s ebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Dapatkan badge keahlian tingkat menengah dengan menyelesaikan kursus Membangun dan Men-Deploy Solusi Machine Learning di Vertex AI, tempat Anda akan belajar cara menggunakan platform Vertex AI Google Cloud, AutoML, dan layanan pelatihan kustom untuk melatih, mengevaluasi, menyesuaikan, menjelaskan, serta men-deploy model machine learning. Kursus badge keahlian ini diperuntukkan bagi Data Scientist dan Engineer Machine Learning profesional. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan Badge keahlian ini, dan challenge lab penilaian akhir, untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.
This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.
This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
Kursus ini memperkenalkan penawaran AI dan machine learning (ML) di Google Cloud yang membangun project AI prediktif dan generatif. Kursus ini akan membahas teknologi, produk, dan alat yang tersedia di seluruh siklus proses data ke AI, yang mencakup fondasi, pengembangan, dan solusi AI. Kursus ini bertujuan membantu data scientist, developer AI, dan engineer ML meningkatkan keterampilan dan pengetahuan mereka melalui pengalaman belajar yang menarik dan latihan praktik langsung.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.
This content is deprecated. Please see the latest version of the course, here.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Seiring semakin meningkatnya penggunaan Kecerdasan Buatan dan Machine Learning di kalangan perusahaan, proses membangunnya secara bertanggung jawab juga menjadi semakin penting. Membicarakan responsible AI mungkin lebih mudah bagi banyak orang daripada mempraktikkannya. Jika Anda tertarik untuk mempelajari cara mengoperasionalkan responsible AI dalam organisasi Anda, kursus ini cocok untuk Anda. Dalam kursus ini, Anda akan mempelajari bagaimana Google Cloud mengoperasionalkan responsible AI, dengan praktik terbaik dan pelajaran yang dapat dipetik. Hal ini berguna sebagai framework bagi Anda untuk membangun pendekatan responsible AI.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.
Kursus Penjelajah AI Generatif - Vertex AI adalah sekumpulan lab yang membahas cara menggunakan AI Generatif di Google Cloud. Melalui lab ini, Anda akan mempelajari cara menggunakan model dalam rangkaian Vertex AI PaLM API, termasuk text-bison, chat-bison, dan textembedding-gecko. Anda juga akan mempelajari desain perintah, praktik terbaik, serta cara menggunakannya untuk pencarian ide, klasifikasi teks, ekstraksi teks, peringkasan teks, dan banyak lagi. Anda juga akan mempelajari cara menyesuaikan model dasar dengan melatihnya melalui pelatihan kustom Vertex AI dan men-deploy-nya ke endpoint Vertex AI.
Kursus ini memperkenalkan Vertex AI Studio, sebuah alat untuk berinteraksi dengan model AI generatif, membuat prototipe ide bisnis, dan meluncurkannya ke dalam produksi. Melalui kasus penggunaan yang imersif, pelajaran menarik, dan lab interaktif, Anda akan menjelajahi siklus proses dari perintah ke produk dan mempelajari cara memanfaatkan Vertex AI Studio untuk aplikasi multimodal Gemini, desain perintah, rekayasa perintah, dan tuning model. Tujuan kursus ini adalah agar Anda dapat memanfaatkan potensi AI generatif dalam project Anda dengan Vertex AI Studio.
Kursus ini menjelaskan cara membuat model keterangan gambar menggunakan deep learning. Anda akan belajar tentang berbagai komponen model keterangan gambar, seperti encoder dan decoder, serta cara melatih dan mengevaluasi model. Pada akhir kursus ini, Anda akan dapat membuat model keterangan gambar Anda sendiri dan menggunakannya untuk menghasilkan teks bagi gambar.
Kursus ini memperkenalkan Anda pada arsitektur Transformer dan model Representasi Encoder Dua Arah dari Transformer (Bidirectional Encoder Representations from Transformers atau BERT). Anda akan belajar tentang komponen utama arsitektur Transformer, seperti mekanisme self-attention, dan cara penggunaannya untuk membangun model BERT. Anda juga akan belajar tentang berbagai tugas yang dapat memanfaatkan BERT, seperti klasifikasi teks, menjawab pertanyaan, dan inferensi natural language. Kursus ini diperkirakan memakan waktu sekitar 45 menit untuk menyelesaikannya.
Dalam kursus ini Anda akan diperkenalkan dengan mekanisme atensi, yakni teknik efektif yang membuat jaringan neural berfokus pada bagian tertentu urutan input. Anda akan mempelajari cara kerja atensi, cara penggunaannya untuk meningkatkan performa berbagai tugas machine learning, termasuk terjemahan mesin, peringkasan teks, dan menjawab pertanyaan.
Kursus ini memberi Anda sinopsis tentang arsitektur encoder-decoder, yang merupakan arsitektur machine learning yang canggih dan umum untuk tugas urutan-ke-urutan seperti terjemahan mesin, ringkasan teks, dan tanya jawab. Anda akan belajar tentang komponen utama arsitektur encoder-decoder serta cara melatih dan menyalurkan model ini. Dalam panduan lab yang sesuai, Anda akan membuat kode pada penerapan simpel arsitektur encoder-decoder di TensorFlow untuk pembuatan puisi dari awal.
Kursus ini memperkenalkan model difusi, yaitu kelompok model machine learning yang belakangan ini menunjukkan potensinya dalam ranah pembuatan gambar. Model difusi mengambil inspirasi dari fisika, khususnya termodinamika. Dalam beberapa tahun terakhir, model difusi menjadi populer baik di dunia industri maupun penelitian. Model difusi mendasari banyak alat dan model pembuatan gambar yang canggih di Google Cloud. Kursus ini memperkenalkan Anda pada teori yang melandasi model difusi dan cara melatih serta men-deploy-nya di Vertex AI.
Dapatkan badge keahlian dengan menyelesaikan kursus Introduction to Generative AI, Introduction to Large Language Models, dan Introduction to Responsible AI. Dengan berhasil menyelesaikan kuis akhir, Anda membuktikan pemahaman Anda tentang konsep dasar AI generatif. Badge keahlian adalah badge digital yang diberikan oleh Google Cloud sebagai pengakuan atas pengetahuan Anda tentang produk dan layanan Google Cloud. Pamerkan badge keahlian Anda dengan menampilkan profil Anda kepada publik dan menambahkannya ke profil media sosial Anda.
Ini adalah kursus pengantar pembelajaran mikro yang dimaksudkan untuk menjelaskan responsible AI, alasan pentingnya responsible AI, dan cara Google mengimplementasikan responsible AI dalam produknya. Kursus ini juga memperkenalkan 7 prinsip AI Google.
Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.