Earn a DRI badge by completing the Enterprise Database Migration - SQL Server Performance Analysis and Tuning with Cloud SQL quest, where you demonstrate your capabilities of Cloud SQL Database Performance Monitoring for SQL Server, Cloud SQL Server Database Performance Analysis for SQL Server, and Cloud SQL Database Performance Tuning for SQL Server. When you complete this activity, you can earn the badge displayed above! View all the badges you have earned by visiting your profile page.
This skill badge course is designed to offer hands-on experience through labs, enabling participants to migrate applications to the cloud using a "Rehost" strategy. Participants will learn essential tasks involved in migrating both frontend (.Net application) and backend (MySQL database) components to existing virtual machines. Through guided and challenge labs, participants will validate successful migrations, reinforcing their understanding of cloud application modernization concepts.
In this course, you learn the fundamentals of application development on Google Cloud. You learn best practices for cloud applications, and how to select compute and data options to match your application use cases. You're introduced to generative AI and how it's used to help build applications. You learn about authentication and authorization, application deployment, continuous integration and delivery, and monitoring and performance tuning for your applications running in Google Cloud. Using lectures and hands-on labs, you learn how to get started building and running applications on Google Cloud.
This learning path aims to upskill Google Cloud partners to perform the specific tasks associated with the priority workload. Learners will discover the specific tasks in rehosting applications from on-premises to Google Cloud. It also aims to re-platform applications to run in GKE. Learners will perform the tasks of Migrating MySQL, Angular, and .NET applications from their on-premises machines to Google Cloud VM instances. Sample code will be used during the migration. Learners will complete a challenge lab that focuses on the critical steps in a rehosting exercise - copying over code for the back-end, front-end, and middle-tier applications and validating that the applications have been migrated correctly. Learners will also complete a challenge lab that focuses on the critical steps in a re-platforming exercise - creating back-end, front-end, and middle-tier Docker images, deploying the same in the GKE cluster, and validating that the application has been deployed correctly.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
完成 在 Vertex AI 設計提示 技能徽章入門課程,即可證明您具備下列技能: 在 Vertex AI 設計提示、分析圖片,以及運用多模態模型生成內容。瞭解如何建立有效的提示、引導生成式 AI 輸出內容, 以及將 Gemini 模型用於實際的行銷情境。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰研究室,即可取得技能徽章 並與親友分享。
本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。
In this course, application developers learn how to design and develop cloud-native applications that seamlessly integrate components from the Google Cloud ecosystem. Through a combination of presentations, demos, and hands-on labs, participants learn how to create repeatable deployments by treating infrastructure as code, choose the appropriate application execution environment for an application, and monitor application performance. Completing one version of each lab is required. Each lab is available in Node.js. In most cases, the same labs are also provided in Python or Java. You may complete each lab in whichever language you prefer.
Google Cloud : Prompt Engineering Guide examines generative AI tools, how they work. We'll explore how to combine Google Cloud knowledge with prompt engineering to improve Gemini responses.
「Google Cloud 基礎知識:核心基礎架構」介紹了在使用 Google Cloud 時會遇到的重要概念和術語。本課程會透過影片和實作實驗室,介紹並比較 Google Cloud 的多種運算和儲存服務,同時提供重要的資源和政策管理工具。