This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.
在本课程中,您将了解 Gemini(Google Cloud 推出的一款依托生成式 AI 的协作工具)如何帮助您使用 Google 产品和服务开发、测试、部署和管理应用。在 Gemini 的协助下,您可以学习如何开发和构建 Web 应用、修复应用中的错误、开发测试和查询数据。您可以通过实操实验了解如何利用 Gemini 来改进软件开发生命周期 (SDLC)。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
生成式 AI 应用可以提供大语言模型 (LLM) 问世前几乎不可能实现的全新用户体验。作为应用开发者,您要如何利用生成式 AI 在 Google Cloud 上构建更具吸引力且功能强大的应用? 在本课程中,您将了解生成式 AI 应用,以及如何利用提示设计和检索增强生成 (RAG) 技术,构建使用 LLM 的强大应用。您将了解可用于生产用途且适合生成式 AI 应用的架构,并构建一个基于 LLM 和 RAG 的聊天应用。