Dans ce cours, nous abordons en détail les composants et les bonnes pratiques de construction de systèmes de ML hautes performances dans des environnements de production. Nous verrons aussi certaines des considérations les plus courantes concernant la construction de ces systèmes, telles que l'entraînement statique, l'entraînement dynamique, l'inférence statique, l'inférence dynamique, les tâches TensorFlow distribuées et les TPU. Ce cours a pour objectif d'explorer les caractéristiques d'un bon système de ML, au-delà de sa capacité à effectuer des prédictions correctes.
Dans ce cours, vous découvrirez comment Gemini, un outil de collaboration Google Cloud optimisé par l'IA générative, vous aide à utiliser les produits et services Google pour développer, tester et gérer des applications. Avec l'assistance de Gemini, vous apprendrez à développer une application Web, à corriger les erreurs de l'application, à créer des tests et à interroger des données. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore le cycle de vie du développement logiciel (SDLC, software development lifecycle). Duet AI a été rebaptisé Gemini, notre modèle nouvelle génération.
Les applications d'IA générative peuvent créer de nouvelles expériences utilisateur qu'il était quasiment impossible d'obtenir avant l'invention des grands modèles de langage (LLM). En tant que développeur d'applications, comment pouvez-vous utiliser l'IA générative pour créer des applications interactives et performantes sur Google Cloud ? Dans ce cours, vous allez découvrir les applications d'IA générative, et comment vous pouvez utiliser la conception de requêtes et la génération augmentée par récupération (RAG) pour créer des applications performantes à l'aide de LLM. Vous allez vous familiariser avec une architecture prête pour la production qui peut être utilisée pour les applications d'IA générative, et vous allez créer une application de chat basée sur des LLM et sur le RAG.