Gabung Login

Tanveer Ahmed

Menjadi anggota sejak 2023

Diamond League

30323 poin
Build MLOps Pipelines using Vertex AI Earned Sep 24, 2025 EDT
Machine Learning Operations (MLOps) untuk AI Generatif Earned Sep 4, 2025 EDT
Machine Learning Operations (MLOps) dengan Vertex AI: Evaluasi Model Earned Sep 4, 2025 EDT
Machine Learning Operations (MLOps): Getting Started Earned Agu 28, 2025 EDT
Evaluate Gen AI model and agent performance Earned Jul 3, 2025 EDT
Generative AI for Document Processing Earned Jun 28, 2025 EDT
Agen AI Generatif: Mentransformasi Organisasi Anda Earned Jun 16, 2025 EDT
Aplikasi AI Generatif: Mentransformasi Pekerjaan Anda Earned Jun 12, 2025 EDT
AI Generatif: Memahami Lanskap Earned Jun 12, 2025 EDT
AI Generatif: Memahami Konsep Dasar Earned Jun 10, 2025 EDT
AI Generatif: Lebih dari Sekadar Chatbot Earned Jun 9, 2025 EDT
Membangun Agen AI Generatif dengan Vertex AI dan Flutter Earned Jun 7, 2025 EDT
Preparing for Your Associate Cloud Engineer Journey Earned Jun 27, 2024 EDT
Membangun Data Warehouse dengan BigQuery Earned Feb 5, 2024 EST
Menyiapkan Data untuk ML API di Google Cloud Earned Jan 18, 2024 EST
Serverless Data Processing with Dataflow: Foundations Earned Okt 27, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned Okt 20, 2023 EDT
Build Batch Data Pipelines on Google Cloud Earned Sep 17, 2023 EDT
Build Data Lakes and Data Warehouses on Google Cloud Earned Sep 10, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Agu 28, 2023 EDT
Preparing for your Professional Data Engineer Journey Earned Agu 16, 2023 EDT
Model Transformer dan Model BERT Earned Agu 14, 2023 EDT
Arsitektur Encoder-Decoder Earned Agu 14, 2023 EDT
Mekanisme Atensi Earned Agu 14, 2023 EDT
Pengantar Pembuatan Gambar Earned Agu 14, 2023 EDT
Generative AI Fundamentals Earned Agu 14, 2023 EDT
Pengantar Responsible AI Earned Agu 14, 2023 EDT
Pengantar Model Bahasa Besar Earned Agu 14, 2023 EDT
Pengantar AI Generatif Earned Agu 12, 2023 EDT
Membangun Infrastruktur dengan Terraform di Google Cloud Earned Mei 18, 2023 EDT
Mengimplementasikan Load Balancing di Compute Engine Earned Apr 27, 2023 EDT
Menyiapkan Lingkungan Pengembangan Aplikasi di Google Cloud Earned Apr 22, 2023 EDT
Mengembangkan Jaringan Google Cloud Anda Earned Apr 16, 2023 EDT
Architecting with Google Kubernetes Engine: Production Earned Apr 13, 2023 EDT
Getting Started with Google Kubernetes Engine Earned Apr 8, 2023 EDT
Infrastruktur Google Cloud Elastis: Penskalaan dan Otomatisasi Earned Apr 2, 2023 EDT
Infrastruktur Google Cloud yang Penting: Fondasi Earned Mar 28, 2023 EDT
Dasar-Dasar Google Cloud: Infrastruktur Inti Earned Mar 25, 2023 EDT

This skill badge aims to evaluate a partner's ability to utilize various methods available to them to automate manual processes involved when deploying machine learning models using Vertex AI. Manual processes are often not scalable which is why advancing an organization's AI/ML adoption requires ML Ops processes to improve the rate of model training, experimentation and deployment.

Pelajari lebih lanjut

Kursus ini dikhususkan untuk membekali Anda dengan pengetahuan dan alat yang diperlukan guna mengungkap tantangan unik yang dihadapi oleh tim MLOps saat men-deploy dan mengelola model AI Generatif, serta mengeksplorasi cara Vertex AI memberdayakan tim AI dalam menyederhanakan proses MLOps dan mencapai keberhasilan dalam project AI Generatif.

Pelajari lebih lanjut

Kursus ini membekali para praktisi machine learning dengan alat, teknik, dan praktik terbaik penting untuk mengevaluasi model AI generatif dan prediktif. Evaluasi model adalah disiplin ilmu yang sangat penting untuk memastikan sistem ML memberikan hasil yang andal, akurat, dan berperforma tinggi dalam produksi. Peserta akan mendapatkan pemahaman yang mendalam mengenai berbagai metrik evaluasi, metodologi, dan penerapannya yang sesuai di berbagai jenis model dan tugas. Kursus ini akan berfokus pada tantangan unik yang dibuat oleh model AI generatif dan memberikan strategi untuk mengatasinya secara efektif. Dengan memanfaatkan platform Vertex AI di Google Cloud, para peserta akan belajar cara mengimplementasikan proses evaluasi yang kuat untuk melakukan pemilihan, pengoptimalan, dan pemantauan berkelanjutan pada model.

Pelajari lebih lanjut

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Pelajari lebih lanjut

Complete the Evaluate Gen AI model and agent performance skill badge to demonstrate your ability to use the Gen AI evaluation service. You will evaluate models to select the best model for a given task, compare models against each other and evaluate the performance of agents. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Pelajari lebih lanjut

Explore how to use AI to automate document processing tasks, such as classifying documents, extracting data from documents, and summarizing documents. Learn how to use the Document AI Workbench to create custom document extractors and summarizers. Upload documents, define fields, create versions, and call endpoints to get structured data and summaries back. Discover a new service called Document AI Warehouse, which is a fully managed service to search, store, govern, and manage documents and their extracted metadata. You will also learn about how it integrates with other Google Cloud services like Document AI, BigQuery, and Cloud Storage.

Pelajari lebih lanjut

Agen AI Generatif: Mentransformasi Organisasi Anda adalah kursus kelima dan terakhir dari jalur pembelajaran Generative AI Leader. Kursus ini membahas cara organisasi menggunakan agen AI generatif kustom untuk membantu mengatasi tantangan bisnis tertentu. Anda akan mendapatkan praktik langsung dalam membangun agen AI generatif dasar, sambil mempelajari komponen agen ini, seperti model, loop penalaran, dan alat.

Pelajari lebih lanjut

Aplikasi AI Generatif: Mentransformasi Pekerjaan Anda adalah kursus keempat dari jalur pembelajaran Generative AI Leader. Kursus ini memperkenalkan aplikasi AI generatif Google, seperti Gemini untuk Workspace dan NotebookLM. Kursus ini memandu Anda memahami konsep seperti grounding, retrieval augmented generation, menyusun perintah yang efektif, dan membangun alur kerja otomatis.

Pelajari lebih lanjut

AI Generatif: Memahami Lanskap adalah kursus ketiga dari alur pembelajaran Generative AI Leader. AI generatif mengubah cara kita bekerja dan berinteraksi dengan dunia di sekitar kita. Namun, sebagai seorang pemimpin, bagaimana Anda dapat memanfaatkan kekuatan AI untuk mendorong hasil bisnis yang nyata? Dalam kursus ini, Anda akan mempelajari berbagai lapisan dalam membangun solusi AI generatif, penawaran Google Cloud, dan faktor yang perlu dipertimbangkan saat memilih solusi.

Pelajari lebih lanjut

AI Generatif: Memahami Konsep Dasar adalah kursus kedua dari alur pembelajaran Generative AI Leader. Dalam kursus ini, Anda akan mempelajari konsep dasar AI generatif. Anda akan mempelajari perbedaan antara AI, ML, dan AI generatif serta mempelajari bagaimana berbagai jenis data memungkinkan AI generatif mengatasi tantangan bisnis. Anda juga akan mendapatkan insight tentang strategi Google Cloud untuk mengatasi keterbatasan model dasar dan tantangan utama dalam pengembangan dan deployment AI yang bertanggung jawab dan aman.

Pelajari lebih lanjut

AI Generatif: Lebih dari Sekadar Chatbot adalah kursus pertama dari alur pembelajaran Generative AI Leader. Kursus ini tidak memiliki prasyarat. Kursus ini bertujuan untuk melampaui pemahaman dasar tentang chatbot guna mengeksplorasi potensi sebenarnya dari AI generatif untuk organisasi Anda. Anda akan mempelajari konsep seperti model dasar dan rekayasa perintah, yang penting untuk memanfaatkan kekuatan AI generatif. Kursus ini juga memandu Anda melalui pertimbangan penting yang harus Anda buat saat mengembangkan strategi AI generatif yang sukses untuk organisasi Anda.

Pelajari lebih lanjut

Dalam kursus ini, Anda akan mempelajari cara mengembangkan aplikasi menggunakan Flutter, yakni toolkit UI portabel dari Google, dan mengintegrasikan aplikasi dengan Gemini, yakni rangkaian produk model AI generatif Google. Anda juga akan menggunakan Vertex AI Agent Builder, yakni platform Google untuk membangun dan mengelola Agen dan aplikasi AI.

Pelajari lebih lanjut

This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.

Pelajari lebih lanjut

Selesaikan badge keahlian tingkat menengah Membangun Data Warehouse dengan BigQuery untuk menunjukkan keterampilan Anda dalam hal berikut: menggabungkan data untuk membuat tabel baru, memecahkan masalah penggabungan, menambahkan data dengan union, membuat tabel berpartisi tanggal, serta menggunakan JSON, array, dan struct di BigQuery. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API.

Pelajari lebih lanjut

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Pelajari lebih lanjut

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Pelajari lebih lanjut

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

Pelajari lebih lanjut

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Pelajari lebih lanjut

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Pelajari lebih lanjut

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Pelajari lebih lanjut

Kursus ini memperkenalkan Anda pada arsitektur Transformer dan model Representasi Encoder Dua Arah dari Transformer (Bidirectional Encoder Representations from Transformers atau BERT). Anda akan belajar tentang komponen utama arsitektur Transformer, seperti mekanisme self-attention, dan cara penggunaannya untuk membangun model BERT. Anda juga akan belajar tentang berbagai tugas yang dapat memanfaatkan BERT, seperti klasifikasi teks, menjawab pertanyaan, dan inferensi natural language. Kursus ini diperkirakan memakan waktu sekitar 45 menit untuk menyelesaikannya.

Pelajari lebih lanjut

Kursus ini memberi Anda sinopsis tentang arsitektur encoder-decoder, yang merupakan arsitektur machine learning yang canggih dan umum untuk tugas urutan-ke-urutan seperti terjemahan mesin, ringkasan teks, dan tanya jawab. Anda akan belajar tentang komponen utama arsitektur encoder-decoder serta cara melatih dan menyalurkan model ini. Dalam panduan lab yang sesuai, Anda akan membuat kode pada penerapan simpel arsitektur encoder-decoder di TensorFlow untuk pembuatan puisi dari awal.

Pelajari lebih lanjut

Dalam kursus ini Anda akan diperkenalkan dengan mekanisme atensi, yakni teknik efektif yang membuat jaringan neural berfokus pada bagian tertentu urutan input. Anda akan mempelajari cara kerja atensi, cara penggunaannya untuk meningkatkan performa berbagai tugas machine learning, termasuk terjemahan mesin, peringkasan teks, dan menjawab pertanyaan.

Pelajari lebih lanjut

Kursus ini memperkenalkan model difusi, yaitu kelompok model machine learning yang belakangan ini menunjukkan potensinya dalam ranah pembuatan gambar. Model difusi mengambil inspirasi dari fisika, khususnya termodinamika. Dalam beberapa tahun terakhir, model difusi menjadi populer baik di dunia industri maupun penelitian. Model difusi mendasari banyak alat dan model pembuatan gambar yang canggih di Google Cloud. Kursus ini memperkenalkan Anda pada teori yang melandasi model difusi dan cara melatih serta men-deploy-nya di Vertex AI.

Pelajari lebih lanjut

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang dimaksudkan untuk menjelaskan responsible AI, alasan pentingnya responsible AI, dan cara Google mengimplementasikan responsible AI dalam produknya. Kursus ini juga memperkenalkan 7 prinsip AI Google.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.

Pelajari lebih lanjut

Selesaikan badge keahlian Membangun Infrastruktur dengan Terraform di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut: Prinsip Infrastruktur sebagai Kode (IaC) menggunakan Terraform, penyediaan dan pengelolaan resource Google Cloud dengan konfigurasi Terraform, pengelolaan status yang efektif (lokal dan jarak jauh), serta modularisasi kode Terraform agar dapat digunakan kembali dan diatur.

Pelajari lebih lanjut

Selesaikan pengantar badge keahlian Mengimplementasikan Load Balancing di Compute Engine untuk menunjukkan keterampilan berikut ini: menulis perintah gcloud dan menggunakan Cloud Shell, membuat dan men-deploy virtual machine di Compute Engine, serta mengonfigurasi jaringan dan load balancer HTTP. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan badge keahlian ini, dan penilaian akhir Challenge Lab, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.

Pelajari lebih lanjut

Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Lingkungan Pengembangan Aplikasi di Google Cloud, yang memungkinkan Anda mempelajari cara membangun dan menghubungkan infrastruktur cloud yang berpusat pada penyimpanan menggunakan kemampuan dasar teknologi berikut: Cloud Storage, Identity and Access Management, Cloud Functions, dan Pub/Sub.

Pelajari lebih lanjut

Dapatkan badge keahlian dengan menyelesaikan kursus Mengembangkan Jaringan Google Cloud Anda yang berisi pelajaran tentang berbagai cara untuk men-deploy dan memantau aplikasi, termasuk cara: menjelajahi peran IAM dan menambahkan/menghapus akses project, membuat jaringan VPC, men-deploy dan memantau VM Compute Engine, menulis kueri SQL, men-deploy dan memantau VM di Compute Engine, serta men-deploy aplikasi menggunakan Kubernetes dengan beberapa pendekatan deployment.

Pelajari lebih lanjut

In this course, you'll learn about Kubernetes and Google Kubernetes Engine (GKE) security; logging and monitoring; and using Google Cloud managed storage and database services from within GKE. This is the second course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Reliable Google Cloud Infrastructure: Design and Process course or the Hybrid Cloud Infrastructure Foundations with Anthos course.

Pelajari lebih lanjut

Welcome to the Getting Started with Google Kubernetes Engine course. If you're interested in Kubernetes, a software layer that sits between your applications and your hardware infrastructure, then you’re in the right place! Google Kubernetes Engine brings you Kubernetes as a managed service on Google Cloud. The goal of this course is to introduce the basics of Google Kubernetes Engine, or GKE, as it’s commonly referred to, and how to get applications containerized and running in Google Cloud. The course starts with a basic introduction to Google Cloud, and is then followed by an overview of containers and Kubernetes, Kubernetes architecture, and Kubernetes operations.

Pelajari lebih lanjut

Kursus akselerasi sesuai permintaan ini memperkenalkan peserta pada infrastruktur dan layanan platform yang komprehensif dan fleksibel yang disediakan oleh Google Cloud. Melalui kombinasi video materi edukasi, demo, dan lab interaktif, peserta akan mengeksplorasi dan men-deploy berbagai elemen solusi, termasuk membuat interkoneksi jaringan yang aman, load balancing, penskalaan otomatis, otomatisasi infrastruktur, serta layanan terkelola.

Pelajari lebih lanjut

Kursus akselerasi sesuai permintaan ini memperkenalkan peserta pada infrastruktur dan layanan platform yang komprehensif dan fleksibel yang disediakan oleh Google Cloud, dengan fokus pada Compute Engine. Melalui kombinasi video materi edukasi, demo, dan lab interaktif, peserta akan mengeksplorasi dan men-deploy berbagai elemen solusi, termasuk komponen infrastruktur seperti jaringan, virtual machine, dan layanan aplikasi. Anda akan mempelajari cara menggunakan Google Cloud melalui konsol dan Cloud Shell. Anda juga akan mempelajari peran arsitek cloud, pendekatan desain infrastruktur, dan konfigurasi networking virtual dengan Virtual Private Cloud (VPC), Project, Jaringan, Subnetwork, alamat IP, Rute, dan Aturan firewall.

Pelajari lebih lanjut

Dasar-Dasar Google Cloud: Infrastruktur Inti memperkenalkan konsep dan terminologi penting untuk bekerja dengan Google Cloud. Melalui video dan lab interaktif, kursus ini menyajikan dan membandingkan banyak layanan komputasi dan penyimpanan Google Cloud, bersama dengan resource penting dan alat pengelolaan kebijakan.

Pelajari lebih lanjut