Unirse Acceder

Tanveer Ahmed

Miembro desde 2023

Liga de Diamantes

30323 puntos
Build MLOps Pipelines using Vertex AI Earned sep 24, 2025 EDT
Operaciones de aprendizaje automático (MLOps) para la IA generativa Earned sep 4, 2025 EDT
Operaciones de aprendizaje automático (MLOps) con Vertex AI: Evaluación de modelos Earned sep 4, 2025 EDT
Operaciones de aprendizaje automático (MLOps): Primeros pasos Earned ago 28, 2025 EDT
Evaluate Gen AI model and agent performance Earned jul 3, 2025 EDT
Generative AI for Document Processing Earned jun 28, 2025 EDT
Agentes de IA generativa: transforma tu organización Earned jun 16, 2025 EDT
Apps de IA generativa: transforma tu trabajo Earned jun 12, 2025 EDT
IA generativa: explora el panorama Earned jun 12, 2025 EDT
IA generativa: descubre los conceptos fundamentales Earned jun 10, 2025 EDT
IA generativa: más allá del chatbot Earned jun 9, 2025 EDT
Crea agentes basados en IA generativa con Vertex AI y Flutter Earned jun 7, 2025 EDT
Preparación para el proceso de certificación Associate Cloud Engineer Earned jun 27, 2024 EDT
Crea un almacén de datos con BigQuery Earned feb 5, 2024 EST
Prepara datos para las APIs de AA en Google Cloud Earned ene 18, 2024 EST
Procesamiento de datos sin servidores con Dataflow: Fundamentos Earned oct 27, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Español Earned oct 20, 2023 EDT
Creación de flujos de procesamiento de datos por lotes en Google Cloud Earned sep 17, 2023 EDT
Modernización de data lakes y almacenes de datos con Google Cloud Earned sep 10, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Español Earned ago 28, 2023 EDT
Preparación para el proceso de certificación Professional Data Engineer Earned ago 16, 2023 EDT
Modelos de transformadores y modelo BERT Earned ago 14, 2023 EDT
Arquitectura de codificador-decodificador Earned ago 14, 2023 EDT
Mecanismo de atención Earned ago 14, 2023 EDT
Introducción a la generación de imágenes Earned ago 14, 2023 EDT
Generative AI Fundamentals Earned ago 14, 2023 EDT
Introducción a la IA responsable Earned ago 14, 2023 EDT
Introducción a los modelos de lenguaje grandes Earned ago 14, 2023 EDT
Introducción a la IA generativa Earned ago 12, 2023 EDT
Crea una infraestructura con Terraform en Google Cloud Earned may 18, 2023 EDT
Implementa el balanceo de cargas en Compute Engine Earned abr 27, 2023 EDT
Configura un entorno de desarrollo de apps en Google Cloud Earned abr 22, 2023 EDT
Desarrolla tu red de Google Cloud Earned abr 16, 2023 EDT
Diseño de arquitecturas con Google Kubernetes Engine: Producción Earned abr 13, 2023 EDT
Introducción a Google Kubernetes Engine Earned abr 8, 2023 EDT
Infraestructura elástica de Google Cloud: Escalamiento y automatización Earned abr 2, 2023 EDT
Infraestructura esencial de Google Cloud: conceptos básicos Earned mar 28, 2023 EDT
Aspectos básicos de Google Cloud: Infraestructura principal Earned mar 25, 2023 EDT

This skill badge aims to evaluate a partner's ability to utilize various methods available to them to automate manual processes involved when deploying machine learning models using Vertex AI. Manual processes are often not scalable which is why advancing an organization's AI/ML adoption requires ML Ops processes to improve the rate of model training, experimentation and deployment.

Más información

El objetivo de este curso es equiparte con los conocimientos y las herramientas que necesitas para descubrir los desafíos únicos que enfrentan los equipos de MLOps cuando implementan y administran modelos de IA generativa, y explorar cómo Vertex AI fortalece a los equipos de IA para optimizar los procesos de MLOps y alcanzar el éxito en los proyectos de IA generativa.

Más información

En este curso, los profesionales del aprendizaje automático aprenderán a utilizar las herramientas, las técnicas y las prácticas recomendadas indispensables para evaluar los modelos de IA generativa y predictiva. La evaluación de modelos es una disciplina esencial para garantizar que los sistemas de AA arrojen resultados confiables, exactos y de alto rendimiento en la producción. Los participantes obtendrán información exhaustiva sobre diversas métricas y metodologías de evaluación, además de su aplicación adecuada en diferentes tipos de modelos y tareas. En este curso, se hará énfasis en los desafíos únicos que presentan los modelos de IA generativa y se ofrecerán estrategias para abordarlos de manera eficaz. Con la plataforma de Vertex AI de Google Cloud, los participantes aprenderán a implementar los procesos sólidos de evaluación para la selección, optimización y supervisión continua de modelos.

Más información

En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.

Más información

Complete the Evaluate Gen AI model and agent performance skill badge to demonstrate your ability to use the Gen AI evaluation service. You will evaluate models to select the best model for a given task, compare models against each other and evaluate the performance of agents. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Más información

Explore how to use AI to automate document processing tasks, such as classifying documents, extracting data from documents, and summarizing documents. Learn how to use the Document AI Workbench to create custom document extractors and summarizers. Upload documents, define fields, create versions, and call endpoints to get structured data and summaries back. Discover a new service called Document AI Warehouse, which is a fully managed service to search, store, govern, and manage documents and their extracted metadata. You will also learn about how it integrates with other Google Cloud services like Document AI, BigQuery, and Cloud Storage.

Más información

Agentes de IA generativa: transforma tu organización es el quinto y último curso de la ruta de aprendizaje de Líder de IA generativa. En este curso, se explora cómo las organizaciones pueden utilizar los agentes de IA generativa personalizados para abordar desafíos empresariales específicos. Puedes obtener experiencia práctica a través de la creación de un agente de IA básico mientras exploras los componentes de estos agentes, como los modelos, los bucles de razonamiento y las herramientas.

Más información

Apps de IA generativa : transforma tu trabajo es el cuarto curso de la ruta de aprendizaje de Líder de IA generativa. En este curso, se presentan las aplicaciones de IA generativa de Google, como Gemini para Workspace y NotebookLM. Te brinda orientación sobre los conceptos como la fundamentación, la generación mejorada por recuperación, la creación de instrucciones eficaces y el desarrollo de flujos de trabajo automatizados.

Más información

IA generativa: explora el panorama es el tercer curso de la ruta de aprendizaje de Líder de IA generativa. La IA generativa está cambiando la manera en la que interactuamos y trabajamos con el mundo que nos rodea. Pero, como líder, ¿cómo puedes aprovechar su poder para generar resultados comerciales reales? En este curso, explorarás las diferentes capas del desarrollo de soluciones de IA generativa, las ofertas de Google Cloud y los factores que se deben considerar cuando se selecciona una solución.

Más información

IA generativa: descubre los conceptos fundamentales es el segundo curso de la ruta de aprendizaje de Líder de IA generativa. En este curso, descubrirás los conceptos fundamentales de la IA generativa explorando las diferencias entre esta, el AA y la IA, y comprendiendo cómo los diferentes tipos de datos permiten abordar desafíos empresariales con la IA generativa. También conocerás las estrategias de Google Cloud para abordar las limitaciones de los modelos de base y los desafíos clave para desarrollar e implementar la IA de forma responsable y segura.

Más información

IA generativa: más allá del chatbot es el primer curso de la ruta de aprendizaje de Líder de IA generativa y no tiene requisitos previos. El objetivo de este curso es profundizar los conocimientos básicos sobre chatbots para explorar el verdadero potencial de la IA generativa para tu organización. Explorarás conceptos como los modelos de base y la ingeniería de instrucciones, que son fundamentales para aprovechar el poder de la IA generativa. Este curso también te sirve como guía para las consideraciones importantes que debes tener cuando desarrollas una estrategia de IA generativa exitosa para tu organización.

Más información

En este curso, aprenderás a desarrollar una app con Flutter, el kit de herramientas de IU portátil de Google, y a integrar la app con Gemini, la familia de modelos de IA generativa de Google. También utilizarás Vertex AI Agent Builder, la plataforma de Google para crear y administrar agentes y aplicaciones basados en IA.

Más información

Este curso te permite estructurar tu preparación para el examen de Associate Cloud Engineer. Aprenderás sobre los dominios de Google Cloud que se incluyen en el examen y la forma de crear un plan de estudio para saber más de ellos.

Más información

Completa la insignia de habilidad intermedia Crea un almacén de datos con BigQuery para demostrar tus habilidades para realizar las siguientes actividades: unir datos para crear tablas nuevas, solucionar problemas de uniones, agregar datos a uniones, crear tablas particionadas por fecha, y trabajar con JSON, arrays y structs en BigQuery. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa el curso con insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia digital que puedes compartir con tus contactos.

Más información

Completa la insignia de habilidad introductoria Prepara datos para las APIs de AA en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: limpiar datos con Dataprep de Trifacta, ejecutar canalizaciones de datos en Dataflow, crear clústeres y ejecutar trabajos de Apache Spark en Dataproc y llamar a APIs de AA, como la API de Cloud Natural Language, la API de Google Cloud Speech-to-Text y la API de Video Intelligence.

Más información

Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.

Más información

La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.

Más información

Las canalizaciones de datos suelen realizarse según uno de los paradigmas extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, grafos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.

Más información

Los dos componentes clave de cualquier canalización de datos son los data lakes y los almacenes de datos. En este curso, se destacan los casos de uso de cada tipo de almacenamiento y se analizan en profundidad las soluciones de data lakes y almacenes disponibles en Google Cloud con detalles técnicos. Además, en este curso, se describen el rol del ingeniero en datos, los beneficios de las canalizaciones de datos exitosas para las operaciones comerciales y por qué la ingeniería de datos debe realizarse en un entorno de nube. Este el primer curso de la serie Ingeniería de datos en Google Cloud. Después de completar este curso, inscríbete en el curso Creación de flujos de procesamiento de datos por lotes en Google Cloud.

Más información

En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.

Más información

Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.

Más información

En este curso, se presentan la arquitectura de transformadores y el modelo de Bidirectional Encoder Representations from Transformers (BERT). Aprenderás sobre los componentes principales de la arquitectura de transformadores, como el mecanismo de autoatención, y cómo se usa para crear el modelo BERT. También aprenderás sobre las diferentes tareas para las que puede usarse BERT, como la clasificación de texto, la respuesta de preguntas y la inferencia de lenguaje natural. Tardarás aproximadamente 45 minutos en completar este curso.

Más información

En este curso, se brinda un resumen de la arquitectura de codificador-decodificador, una arquitectura de aprendizaje automático importante y potente para realizar tareas de secuencia por secuencia, como las de traducción automática, resúmenes de texto y respuestas a preguntas. Aprenderás sobre los componentes principales de la arquitectura de codificador-decodificador y cómo entrenar y entregar estos modelos. En la explicación del lab, programarás una implementación sencilla de la arquitectura de codificador-decodificador en TensorFlow para generar poemas desde un comienzo.

Más información

Este curso es una introducción al mecanismo de atención, una potente técnica que permite a las redes neuronales enfocarse en partes específicas de una secuencia de entrada. Sabrás cómo funciona la atención y cómo puede utilizarse para mejorar el rendimiento de diversas tareas de aprendizaje automático, como la traducción automática, el resumen de textos y la respuesta a preguntas.

Más información

En este curso, se presenta una introducción a los modelos de difusión: una familia de modelos de aprendizaje automático que demostraron ser muy prometedores en el área de la generación de imágenes. Los modelos de difusión se inspiran en la física, específicamente, en la termodinámica. En los últimos años, los modelos de difusión se han vuelto populares tanto en investigaciones como en la industria. Los modelos de difusión respaldan muchos de los modelos de generación de imágenes y herramientas vanguardistas de Google Cloud. En este curso, se presenta la teoría detrás de los modelos de difusión y cómo entrenarlos y, luego, implementarlos en Vertex AI.

Más información

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

Más información

Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA responsable, por qué es importante y cómo la implementa Google en sus productos. También se presentan los 7 principios de la IA de Google.

Más información

Este es un curso introductorio de microaprendizaje en el que se explora qué son los modelos de lenguaje grandes (LLM), sus casos de uso y cómo se puede utilizar el ajuste de instrucciones para mejorar el rendimiento de los LLM. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.

Más información

Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.

Más información

Completa la insignia de habilidad intermedia Crea una infraestructura con Terraform en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: aplicar los principios de la infraestructura como código (IaC) con Terraform; aprovisionar y administrar recursos de Google Cloud con parámetros de configuración de Terraform; realizar una administración de estado eficaz (local y remota) y modularizar el código de Terraform para la reutilización y la organización.

Más información

Completa la insignia de habilidad introductoria Implementa el balanceo de cargas en Compute Engine y demuestra tus habilidades para realizar las siguientes actividades: escribir comandos de gcloud y usar Cloud Shell, crear e implementar máquinas virtuales en Compute Engine, y configurar balanceadores de cargas de red y HTTP. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa esta insignia de habilidad y el Lab de desafío de la evaluación final para recibir una insignia que puedes compartir con tus contactos.

Más información

Para ganar una insignia de habilidad, completa el curso Configura un entorno de desarrollo de apps en Google Cloud. Allí aprenderás a crear y conectar una infraestructura de nube centrada en el almacenamiento usando las capacidades básicas de las siguientes tecnologías: Cloud Storage, Identity and Access Management, Cloud Functions y Pub/Sub.

Más información

Obtén una insignia de habilidad completando el curso Desarrolla tu red de Google Cloud, en el que conocerás múltiples formas de implementar y supervisar aplicaciones, incluidos cómo explorar roles de IAM y agregar o quitar el acceso a los proyectos, crear redes de VPC, implementar y supervisar VMs de Compute Engine, escribir consultas en SQL, implementar y supervisar VMs en Compute Engine y, además, implementar aplicaciones a través de Kubernetes con múltiples enfoques de implementación.

Más información

En este curso, aprenderás sobre la seguridad de Kubernetes y Google Kubernetes Engine (GKE), los registros y la supervisión, y cómo usar los servicios administrados de almacenamiento y de bases de datos de Google Cloud desde GKE. Este es el segundo curso de la serie Diseño de arquitecturas con Google Kubernetes Engine. Después de completar este curso, inscríbase en los cursos Infraestructura confiable de Google Cloud: El diseño y el proceso o Hybrid Cloud Infrastructure Foundations with Anthos.

Más información

Te damos la bienvenida al curso Introducción a Google Kubernetes Engine. Si te interesa Kubernetes, una capa de software ubicada entre tus aplicaciones y la infraestructura de tu hardware, estás en el lugar correcto. Google Kubernetes Engine te ofrece Kubernetes como un servicio administrado en Google Cloud. El objetivo de este curso es presentar los conceptos básicos de Google Kubernetes Engine o GKE, como se conoce comúnmente, y cómo alojar aplicaciones en contenedores y ejecutarlas en Google Cloud. El curso comienza con una introducción básica a Google Cloud, seguida de una descripción general de los contenedores y Kubernetes, la arquitectura de Kubernetes y las operaciones de esta plataforma.

Más información

En este curso acelerado a pedido, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud. A través de una combinación de clases por video, demostraciones y labs prácticos, los participantes exploran y, también, implementan elementos de las soluciones, como la interconexión segura de redes, el balanceo de cargas, el ajuste de escala automático, la automatización de la infraestructura y los servicios administrados.

Más información

En este curso acelerado on demand, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud, con un enfoque en Compute Engine. Mediante una serie de clases por video, demostraciones y labs prácticos, los participantes pueden explorar y, también, implementar elementos de soluciones, incluidos componentes de infraestructura, como redes, máquinas virtuales y servicios de aplicaciones. Aprenderás a usar Google Cloud mediante la consola y Cloud Shell. También te familiarizarás con la función de un arquitecto de nube, enfoques para el diseño de la infraestructura y la configuración de redes virtuales con una nube privada virtual (VPC), proyectos, redes, subredes, direcciones IP, rutas y reglas de firewall.

Más información

Aspectos básicos de Google Cloud: Infraestructura principal presenta conceptos y terminología importantes para trabajar con Google Cloud. Mediante videos y labs prácticos, en este curso se presentan y comparan muchos de los servicios de procesamiento y almacenamiento de Google Cloud, junto con importantes recursos y herramientas de administración de políticas.

Más información