Join Sign in

Shyam Bharat Pathivada

Member since 2022

Diamond League

32295 points
Extend Gemini with controlled generation and Tool use Earned يوليو 24, 2025 EDT
Empower Gen AI apps with tool use Earned يوليو 23, 2025 EDT
Deploy Multi-Agent Systems with Agent Development Kit (ADK) and Agent Engine Earned يونيو 14, 2025 EDT
Orchestrating Gen AI Applications with LangChain Earned يونيو 10, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned يناير 18, 2025 EST
Machine Learning Operations (MLOps) with Vertex AI: Model Evaluation Earned يناير 17, 2025 EST
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned مايو 28, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned مايو 7, 2024 EDT
Preparing for your Professional Data Engineer Journey Earned مايو 6, 2024 EDT
Vector Search and Embeddings Earned مارس 20, 2024 EDT
Develop Advanced Enterprise Search and Conversation Applications Earned مارس 20, 2024 EDT
Introduction to CES and Conversational Agents Earned مارس 17, 2024 EDT
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned مارس 17, 2024 EDT
Building Gen AI Apps with Vertex AI: Prompting and Tuning Earned مارس 17, 2024 EDT
Text Prompt Engineering Techniques Earned مارس 16, 2024 EDT
Search with AI Applications Earned مارس 16, 2024 EDT
Introduction to Vertex AI Studio Earned فبراير 29, 2024 EST
Responsible AI: Applying AI Principles with Google Cloud Earned فبراير 29, 2024 EST
Generative AI Fundamentals Earned فبراير 29, 2024 EST
Generative AI Explorer : Vertex AI Earned فبراير 29, 2024 EST
Introduction to Responsible AI Earned فبراير 28, 2024 EST
Introduction to Large Language Models Earned فبراير 28, 2024 EST
Introduction to Generative AI Earned فبراير 28, 2024 EST

Complete the Extend Gemini with controlled generation and Tool use skill badge to demonstrate your proficiency in connecting models to external tools and APIs. This allows models to augment their knowledge, extend their capabilities and interact with external systems to take actions such as sending an email. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!"

Learn more

An LLM-based application can process language in a way that resembles thought. But if you want to extend its capabilities to take actions by running other functions you have coded, you will need to use function calling. This can also be referred to as tool use. Additionally, you can give a model the ability to search Google or search a data store of documents to ground its responses. In other words, to base its answers on that information. In this course, you’ll explore these concepts.

Learn more

In this course, you’ll learn to use the Google Agent Development Kit to build complex, multi-agent systems. You will build agents equipped with tools, and connect them with parent-child relationships and flows to define how they interact. You’ll run your agents locally and deploy them to Vertex AI Agent Engine to run as a managed agentic flow, with infrastructure decisions and resource scaling handled by Agent Engine. Please note these labs are based off a pre-released version of this product. There may be some lag on these labs as we provide maintenance updates.

Learn more

This course equips full-stack mobile and web developers with the skills to integrate generative AI features into their applications using LangChain. You'll learn how to leverage LangChain’s capabilities for backend flows and seamless model execution, all within the familiar environment of Python. The course guides you through the entire process, from prototyping to production, ensuring a smooth journey in building next-generation AI-powered applications.

Learn more

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Learn more

This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in production. Participants will gain a deep understanding of various evaluation metrics, methodologies, and their appropriate application across different model types and tasks. The course will emphasize the unique challenges posed by generative AI models and provide strategies for tackling them effectively. By leveraging Google Cloud's Vertex AI platform, participants will learn how to implement robust evaluation processes for model selection, optimization, and continuous monitoring.

Learn more

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Learn more

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Learn more

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Learn more

Explore AI-powered search technologies, tools, and applications in this course. Learn semantic search utilizing vector embeddings, hybrid search combining semantic and keyword approaches, and retrieval-augmented generation (RAG) minimizing AI hallucinations as a grounded AI agent. Gain practical experience with Vertex AI Vector Search to build your intelligent search engine.

Learn more

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

Learn more

This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.

Learn more

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

Learn more

(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.

Learn more

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

Learn more

(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.

Learn more

This course introduces Vertex AI Studio, a tool to interact with generative AI models, prototype business ideas, and launch them into production. Through an immersive use case, engaging lessons, and a hands-on lab, you’ll explore the prompt-to-product lifecycle and learn how to leverage Vertex AI Studio for Gemini multimodal applications, prompt design, prompt engineering, and model tuning. The aim is to enable you to unlock the potential of gen AI in your projects with Vertex AI Studio.

Learn more

As the use of enterprise Artificial Intelligence and Machine Learning continues to grow, so too does the importance of building it responsibly. A challenge for many is that talking about responsible AI can be easier than putting it into practice. If you’re interested in learning how to operationalize responsible AI in your organization, this course is for you. In this course, you will learn how Google Cloud does this today, together with best practices and lessons learned, to serve as a framework for you to build your own responsible AI approach.

Learn more

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

Learn more

This content is deprecated. Please see the latest version of the course, here.

Learn more

This is an introductory-level microlearning course aimed at explaining what responsible AI is, why it's important, and how Google implements responsible AI in their products. It also introduces Google's 3 AI principles.

Learn more

This is an introductory level micro-learning course that explores what large language models (LLM) are, the use cases where they can be utilized, and how you can use prompt tuning to enhance LLM performance. It also covers Google tools to help you develop your own Gen AI apps.

Learn more

This is an introductory level microlearning course aimed at explaining what Generative AI is, how it is used, and how it differs from traditional machine learning methods. It also covers Google Tools to help you develop your own Gen AI apps.

Learn more