加入 登录

Juan Alberto Hernandez Arreola

成为会员时间:2024

钻石联赛

47241 积分
Logging and Monitoring in Google Cloud Earned Aug 26, 2025 EDT
彈性的 Google Cloud 基礎架構:資源調度與自動化 Earned Jul 18, 2025 EDT
Developing Applications with Cloud Run on Google Cloud: Fundamentals Earned Jul 17, 2025 EDT
開始使用 Google Kubernetes Engine Earned Jul 11, 2025 EDT
可靠的 Google Cloud 基礎架構:設計與程序 Earned Jul 8, 2025 EDT
重要的 Google Cloud 基礎架構:核心服務 Earned Jun 17, 2025 EDT
重要的 Google Cloud 基礎架構:基本概念 Earned Jun 10, 2025 EDT
Google Cloud 基礎知識:核心基礎架構 Earned Jun 2, 2025 EDT
Preparing for your Professional Cloud Architect Journey Earned May 23, 2025 EDT
Implementing Generative AI with Vertex AI Earned May 19, 2025 EDT
建立圖像說明生成模型 Earned Apr 4, 2025 EDT
圖像生成簡介 Earned Apr 3, 2025 EDT
Transformer 和 BERT 模型 Earned Apr 3, 2025 EDT
編碼器-解碼器架構 Earned Apr 2, 2025 EDT
Modernize Java Applications Earned Mar 31, 2025 EDT
注意力機制 Earned Mar 31, 2025 EDT
Modernization of Java Applications for Google Cloud Earned Mar 27, 2025 EDT
Empower Gen AI apps with tool use Earned Mar 27, 2025 EDT
Integrate Generative AI Into Your Apps with Firebase Genkit Earned Mar 24, 2025 EDT
Build Generative AI Apps with Firebase Genkit Earned Mar 19, 2025 EDT
Develop Advanced Enterprise Search and Conversation Applications Earned Mar 14, 2025 EDT
Deploy, Test & Evaluate Gen AI Apps Earned Feb 28, 2025 EST
Orchestrate LLM solutions with LangChain Earned Feb 26, 2025 EST
Orchestrating Gen AI Applications with LangChain Earned Feb 24, 2025 EST
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned Jan 10, 2025 EST
Improving developer velocity with Gemini Code Assist Earned Nov 22, 2024 EST
使用 Gemini 多模態功能和多模態 RAG 檢查複合型文件 Earned Nov 19, 2024 EST
Custom Search with Embeddings in Vertex AI Earned Nov 14, 2024 EST
Vector Search 和嵌入 Earned Oct 30, 2024 EDT
在 Vertex AI 使用 Gemini API 探索生成式 AI Earned Oct 24, 2024 EDT
Building Gen AI Apps with Vertex AI: Prompting and Tuning Earned Oct 16, 2024 EDT

This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.

了解详情

這堂隨選密集課程會向參加人員說明 Google Cloud 提供的全方位彈性基礎架構和平台服務。這堂課結合了視訊講座、示範和實作研究室,可讓參加人員探索及部署解決方案元素,包括安全地建立互連網路、負載平衡、自動調度資源、基礎架構自動化,以及代管服務。

了解详情

This course introduces the Cloud Run serverless platform for running applications. In this course, you learn about the fundamentals of Cloud Run, its resource model and the container lifecycle. You learn about service identities, how to control access to services, and how to develop and test your application locally before deploying it to Cloud Run. The course also teaches you how to integrate with other services on Google Cloud so you can build full-featured applications.

了解详情

歡迎參加「開始使用 Google Kubernetes Engine」課程。Kubernetes 是位於應用程式和硬體基礎架構之間的軟體層。如果您對這項技術感興趣,這堂課程可以滿足您的需求。有了 Google Kubernetes Engine,您就能在 Google Cloud 中以代管服務的形式使用 Kubernetes。 本課程的目標在於介紹 Google Kubernetes Engine (常簡稱為 GKE) 的基本概念,以及如何將應用程式容器化,以便在 Google Cloud 中執行。課程首先會初步介紹 Google Cloud,隨後簡介容器、Kubernetes、Kubernetes 架構和 Kubernetes 作業。

了解详情

這堂課程可讓參加人員瞭解如何使用確實有效的設計模式,在 Google Cloud 中打造相當可靠且效率卓越的解決方案。這堂課程接續了「設定 Google Compute Engine 架構」或「設定 Google Kubernetes Engine 架構」課程的內容,並假設參加人員曾實際運用上述任一課程涵蓋的技術。這堂課程結合了簡報、設計活動和實作研究室,可讓參加人員瞭解如何定義業務和技術需求,並在兩者之間取得平衡,設計出相當可靠、可用性高、安全又符合成本效益的 Google Cloud 部署項目。

了解详情

這堂隨選密集課程會向參加人員說明 Google Cloud 提供的全方位彈性基礎架構和平台服務,並將重點放在 Compute Engine。這堂課程結合了視訊講座、示範和實作研究室,可讓參加人員探索及部署解決方案元素,例如網路、系統和應用程式服務等基礎架構元件。另外,這堂課也會介紹如何部署實用的解決方案,包括客戶提供的加密金鑰、安全性和存取權管理機制、配額與帳單,以及資源監控功能。

了解详情

這堂隨選密集課程會向參加人員說明 Google Cloud 提供的全方位彈性基礎架構和平台服務,尤其側重於 Compute Engine。這堂課程結合了視訊講座、示範和實作研究室,可讓參加人員探索及部署解決方案元素,例如網路、虛擬機器和應用程式服務等基礎架構元件。您會瞭解如何透過控制台和 Cloud Shell 使用 Google Cloud。另外,您也能瞭解雲端架構師的職責、基礎架構設計方法,以及具備虛擬私有雲 (VPC)、專案、網路、子網路、IP 位址、路徑和防火牆規則的虛擬網路設定。

了解详情

「Google Cloud 基礎知識:核心基礎架構」介紹了在使用 Google Cloud 時會遇到的重要概念和術語。本課程會透過影片和實作實驗室,介紹並比較 Google Cloud 的多種運算和儲存服務,同時提供重要的資源和政策管理工具。

了解详情

This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

了解详情

本課程說明如何使用深度學習來建立圖像說明生成模型。您將學習圖像說明生成模型的各個不同組成部分,例如編碼器和解碼器,以及如何訓練和評估模型。在本課程結束時,您將能建立自己的圖像說明生成模型,並使用模型產生圖像說明文字。

了解详情

本課程將介紹擴散模型,這是一種機器學習模型,近期在圖像生成領域展現亮眼潛力。概念源自物理學,尤其深受熱力學影響。過去幾年來,在學術界和業界都是炙手可熱的焦點。在 Google Cloud 中,擴散模型是許多先進圖像生成模型和工具的基礎。課程將介紹擴散模型背後的理論,並說明如何在 Vertex AI 上訓練和部署這些模型。

了解详情

這堂課程將說明變換器架構,以及基於變換器的雙向編碼器表示技術 (BERT) 模型,同時帶您瞭解變換器架構的主要組成 (如自我注意力機制) 和如何用架構建立 BERT 模型。此外,也會介紹 BERT 適用的各種任務,像是文字分類、問題回答和自然語言推論。課程預計約 45 分鐘。

了解详情

本課程概要說明解碼器與編碼器的架構,這種強大且常見的機器學習架構適用於序列對序列的任務,例如機器翻譯、文字摘要和回答問題。您將認識編碼器與解碼器架構的主要元件,並瞭解如何訓練及提供這些模型。在對應的研究室逐步操作說明中,您將學習如何從頭開始使用 TensorFlow 寫程式,導入簡單的編碼器與解碼器架構來產生詩詞。

了解详情

This skill badge course is designed to offer hands-on experience through labs, guiding participants in gaining practical expertise in modernizing Java applications on the Google Cloud.

了解详情

本課程將介紹注意力機制,說明這項強大技術如何讓類神經網路專注於輸入序列的特定部分。此外,也將解釋注意力的運作方式,以及如何使用注意力來提高各種機器學習任務的成效,包括機器翻譯、文字摘要和回答問題。

了解详情

This course aims to upskill Google Cloud partners to perform specific tasks in rehosting applications from on-premise to Google Cloud. It also aims to re-platform applications to run in GKE. Learners will perform the tasks of Migrating MySQL, Angular, and Java applications from their on-premise machines to Google Cloud VM instances. Sample code will be used during the migration.

了解详情

An LLM-based application can process language in a way that resembles thought. But if you want to extend its capabilities to take actions by running other functions you have coded, you will need to use function calling. This can also be referred to as tool use. Additionally, you can give a model the ability to search Google or search a data store of documents to ground its responses. In other words, to base its answers on that information. In this course, you’ll explore these concepts.

了解详情

Learn to build generative AI applications leveraging Firebase Genkit to call LLMs on Google Cloud and elsewhere, simplify complex applications' code and deploy your solution on Google Cloud.

了解详情

This course equips app developers with the skills to integrate generative AI features into their applications using Firebase Genkit. You learn how to leverage Firebase Genkit's capabilities for backend flows and seamless model execution, all using Node.js. The course guides you through the entire process, from prototyping to production, providing a pattern for building next-generation AI-powered applications.

了解详情

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

了解详情

All applications, including generative AI applications, should be deployed securely & have their performance monitored. In this course, you will explore a pattern for easily securing prototype generative AI applications for internal tool use or customer demos. Additionally, you will learn strategies to unit test generative AI applications and evaluate their performance with the Rapid Evaluation API.

了解详情

Learn to use LangChain to call Google Cloud LLMs and Generative AI Services and Datastores to simplify complex applications' code.

了解详情

This course equips full-stack mobile and web developers with the skills to integrate generative AI features into their applications using LangChain. You'll learn how to leverage LangChain’s capabilities for backend flows and seamless model execution, all within the familiar environment of Python. The course guides you through the entire process, from prototyping to production, ensuring a smooth journey in building next-generation AI-powered applications.

了解详情

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

了解详情

Learn how Gemini can revolutionize your ability to develop applications! This course helps developers go beyond the basics and learn how to integrate Gemini into their workflows.

了解详情

完成 使用 Gemini 多模態功能和多模態 RAG 檢查複合型文件 技能徽章中階課程,即可證明您具備下列技能: 透過 Gemini 多模態功能,使用多模態提示從文字和影像資料擷取資訊、生成影片說明,以及擷取影片以外的額外資訊; 透過 Gemini 的多模態檢索增強生成 (RAG) 功能,為含有文字和圖片的文件建構中繼資料、取得所有相關文字分塊,以及顯示引用資料。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成本課程及結業評量挑戰研究室,即可取得技能徽章,並與親友分享。

了解详情

This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.

了解详情

這堂課程會介紹 AI 搜尋技術、工具和應用程式。主題涵蓋使用向量嵌入執行語意搜尋;結合語意和關鍵字做法的混合型搜尋機制;以及運用檢索增強生成 (RAG) 技術建構有基準的 AI 代理,盡可能減少 AI 幻覺。您可以實際使用 Vertex AI Vector Search,打造智慧型搜尋引擎。

了解详情

完成「在 Vertex AI 使用 Gemini API 探索生成式 AI」技能徽章中階課程,即可證明自己具備下列技能: 可運用 Gemini API 生成文字、分析圖片和影片來強化內容創作能力,還能使用函式呼叫技巧。 本課程將帶您瞭解如何善用進階的 Gemini 技術、使用多模態內容生成功能,並提升 AI 專案的潛力。 通過實作實驗室和挑戰評量,就能獲得技能徽章,證明自己擁有特定產品的 實作知識。完成課程或直接進行挑戰實驗室, 即可取得徽章。徽章可證明您的專業能力、 提升專業形象,開創更多職涯發展機會。 已獲得的徽章會顯示在您的個人資料 中。

了解详情

(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.

了解详情