Ganhe um selo de habilidade ao concluir o curso Noções básicas do Google Cloud Compute, onde você aprende a trabalhar com máquinas virtuais (VMs), discos e servidores da Web usando o Compute Engine. O selo de habilidade é um selo digital exclusivo emitido como reconhecimento da sua proficiência nos produtos e serviços do Google Cloud e testa sua habilidade de aplicar o conhecimento em um ambiente prático e interativo. Complete esse curso e o laboratório com desafio da avaliação final para receber um selo digital que você pode compartilhar com seus contatos.
Neste curso, vamos conhecer o Gemini no BigQuery, um pacote de recursos com tecnologia de IA que auxilia no fluxo de trabalho de dados para inteligência artificial. Esses recursos incluem preparação e análise detalhada de dados, solução de problemas e geração de código, além da descoberta e visualização do fluxo de trabalho. Com explicações conceituais, um caso de uso prático e o laboratório, o curso ensina aos profissionais de dados como aumentar a produtividade e acelerar o pipeline de desenvolvimento.
Neste curso, vamos conhecer o Vertex AI Studio, uma ferramenta para interagir com modelos de IA generativa, prototipar ideias comerciais e colocá-las em produção. Com a ajuda de um caso de uso imersivo, lições interessantes e um laboratório, você vai conhecer o ciclo de vida do comando à produção, além de usar o Vertex AI Studio para aplicativos multimodais do Gemini, design e engenharia de comandos e ajuste de modelos. O objetivo é permitir que você descubra todo o potencial da IA generativa nos seus projetos com o Vertex AI Studio.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
Quanto maior é o uso da inteligência artificial empresarial e do machine learning, mais importante é desenvolvê-los de maneira responsável. Para muitos, falar sobre a IA responsável pode ser mais fácil, mas colocá-la em prática é um desafio. Se você tem interesse em aprender a operacionalizar a IA responsável na sua organização, este curso é para você. Nele, você vai aprender como o Google Cloud faz isso hoje, além de analisar práticas recomendadas e lições aprendidas, a fim de criar uma base para elaborar sua própria abordagem de IA responsável.
Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Conquiste o selo de habilidade intermediário ao concluir o curso Como criar e implantar soluções de machine learning na Vertex AI. Nele você aprenderá a usar a plataforma Vertex AI, o AutoML e os serviços de treinamento personalizados para treinar, avaliar, ajustar, explicar e implantar modelos de machine learning. Esse curso com selo de habilidade é destinado a cientistas de dados e engenheiros de machine learning. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com sua rede.
Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e testam sua habilidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado nas suas redes sociais e currículo.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
Este curso tem uma abordagem realista para o fluxo de trabalho de ML usando um estudo de caso em que uma equipe tem vários casos de uso e exigências comerciais em ML. Essa equipe precisa conhecer as ferramentas necessárias para a governança e o gerenciamento de dados e decidir a melhor abordagem para o processamento deles. A equipe terá três opções para criar modelos de ML em dois casos de uso. Neste curso, explicamos quando usar o AutoML, o BigQuery ML ou o treinamento personalizado para alcançar os objetivos.
Neste curso, vamos conhecer os componentes e as práticas recomendadas para criar sistemas de ML com alto desempenho em ambientes de produção. Vamos abordar algumas considerações comuns relacionadas à criação desses sistemas, como treinamento estático e dinâmico, inferência estática e dinâmica, TensorFlow distribuído e TPUs. O objetivo deste curso é conhecer as características de um sistema de ML eficiente, que vão muito além da capacidade de fazer boas previsões.
Neste curso, os participantes vão conhecer as ferramentas de MLOps e as práticas recomendadas para a implantação, a avaliação, o monitoramento e a operação de sistemas de ML de produção no Google Cloud. MLOps é uma disciplina com foco na implantação, teste, monitoramento e automação de sistemas de ML em produção. Também incluímos experiências práticas de uso da ingestão de streaming do Vertex AI Feature Store na camada do SDK.
Neste curso, os participantes vão conhecer as ferramentas de MLOps e as práticas recomendadas para a implantação, a avaliação, o monitoramento e a operação de sistemas de ML de produção no Google Cloud. MLOps é uma disciplina com foco na implantação, no teste, no monitoramento e na automação de sistemas de ML em produção. Profissionais de engenharia de machine learning usam ferramentas para fazer melhorias contínuas e avaliações de modelos implantados. São profissionais que trabalham com ciências de dados e desenvolvem modelos para garantir a velocidade e o rigor na implantação de modelos com melhor desempenho.
O curso apresenta os benefícios de usar a Vertex AI Feature Store e ensina a melhorar a acurácia dos modelos de ML e a identificar as colunas de dados que apresentam os atributos mais úteis. Ele também oferece conteúdo teórico e laboratórios sobre engenharia de atributos com BigQuery ML, Keras e TensorFlow.
Este curso ensina a criar modelos de ML com o TensorFlow e o Keras, melhorar a acurácia deles e desenvolver modelos para uso em escala.
O curso começa com a seguinte discussão: como melhorar a qualidade dos dados e fazer uma análise exploratória deles? Descrevemos o AutoML na Vertex AI e como criar, treinar e implantar um modelo de ML sem escrever nenhuma linha de código. Você vai conhecer os benefícios do BigQuery ML. Depois vamos falar sobre como otimizar um modelo de machine learning (ML) e como a generalização e a amostragem podem ajudar na avaliação de qualidade dos modelos de ML em treinamentos personalizados.
Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.
Course Description:
Conclua o selo de habilidade intermediário Implantar aplicativos do Kubernetes no Google Cloud para demonstrar que você é capaz de: configurar e criar imagens de contêiner do Docker, criar e gerenciar clusters do Google Kubernetes Engine (GKE), utilizar o kubectl para o gerenciamento eficiente de clusters e implantar aplicativos do Kubernetes com a prática de entrega contínua (CD).
Conclua o curso intermediário Desenvolvimento de apps sem servidor com o Firebase para demonstrar suas habilidades nestas áreas: arquitetura e criação de aplicativos da Web sem servidor com o Firebase, utilizar o Firestore no gerenciamento de bancos de dados, automatizar os processos de implantação com o Cloud Build e integrar a funcionalidade do Google Assistente aos seus aplicativos.
Bem-vindo ao curso "Introdução ao Google Kubernetes Engine". Se você têm interesse no Kubernetes, uma camada de software que fica entre seus aplicativos e a infraestrutura de hardware, aqui é o lugar certo. O Google Kubernetes Engine transforma o Kubernetes em um serviço gerenciado no Google Cloud. O objetivo deste curso é apresentar os conceitos básicos do Google Kubernetes Engine, ou GKE, como é comumente conhecido, e aprender a conteinerizar e executar aplicativos no Google Cloud. O curso começa com uma introdução básica ao Google Cloud e é seguido pelos conceitos gerais dos contêineres e do Kubernetes, da arquitetura do Kubernetes e das operações do Kubernetes.
Conclua o curso intermediário Como desenvolver aplicativos sem servidor no Cloud Run para demonstrar suas habilidades de integração do Cloud Run com o Cloud Storage para gerenciamento de dados, arquitetura de sistemas assíncronos e resilientes usando o Cloud Run e o Pub/Sub, construção de gateways da API REST com a tecnologia do Cloud Run e a criação e implantação de serviços no Cloud Run. Os selos de habilidade são digitais, exclusivos e emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e comprovar sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Course four of the Anthos series prepares students to consider multiple approaches for modernizing applications and services within Anthos environments. Topics include optimizing workloads on serverless platforms and migrating workloads to Anthos. This course is a continuation of course three, Anthos on Bare Metal, and assumes direct experience with the topics covered in that course.
This course introduces you to fundamentals, practices, capabilities and tools applicable to modern cloud-native application development using Google Cloud Run. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to on Google Cloud using Cloud Run.design, implement, deploy, secure, manage, and scale applications
Course Description:
Neste curso, os desenvolvedores de apps aprendem a criar e desenvolver aplicativos nativos da nuvem que se integram totalmente aos serviços gerenciados do Google Cloud. Com as apresentações, as demonstrações e os laboratórios práticos, os participantes vão aprender a aplicar as práticas recomendadas para o desenvolvimento de apps e usar os serviços do Google Cloud Storage específicos para objetos, dados relacionais, armazenamento em cache e análises de dados. É necessário concluir pelo menos uma versão de cada laboratório. Todos os laboratórios estão disponíveis em Node.js. A maioria deles também tem versões em Python ou Java. Use a linguagem que você preferir. Este é o primeiro curso da série "Developing Applications with Google Cloud". Depois de concluir este curso, inscreva-se no "Securing and Integrating Components of your Application".
"Noções básicas do Google Cloud: infraestrutura principal" é uma apresentação da terminologia e de conceitos importantes para trabalhar com o Google Cloud. Usando vídeos e laboratórios práticos, o curso apresenta e compara vários serviços de armazenamento e computação do Google Cloud, além de ferramentas importantes para o gerenciamento de políticas e recursos.