参加 ログイン

Veyccan Jinu

メンバー加入日: 2023

ゴールドリーグ

57040 ポイント
Google Cloud コンピューティングの基礎 Earned 12月 11, 2024 EST
Gemini in BigQuery で生産性を高める Earned 12月 4, 2024 EST
Vertex AI Studio の概要 Earned 12月 4, 2024 EST
Text Prompt Engineering Techniques Earned 12月 4, 2024 EST
責任ある AI: Google Cloud における AI に関する原則の適用 Earned 12月 4, 2024 EST
責任ある AI の概要 Earned 12月 4, 2024 EST
Generative AI for Business Leaders Earned 12月 4, 2024 EST
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned 10月 23, 2024 EDT
Generative AI Fundamentals Earned 10月 21, 2024 EDT
Vertex AI での ML ソリューションの構築とデプロイ Earned 8月 13, 2024 EDT
Google Cloud の ML API 用にデータを準備 Earned 8月 6, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned 7月 31, 2024 EDT
Natural Language Processing on Google Cloud Earned 7月 29, 2024 EDT
Recommendation Systems on Google Cloud Earned 7月 25, 2024 EDT
企業における ML Earned 7月 25, 2024 EDT
本番環境 ML システム Earned 7月 25, 2024 EDT
Vertex AI を使用した ML オペレーション(MLOps): 特徴の管理 Earned 7月 25, 2024 EDT
ML オペレーション(MLOps): 概要 Earned 7月 25, 2024 EDT
特徴量エンジニアリング Earned 7月 23, 2024 EDT
Google Cloud での Keras を使った ML モデルの構築、トレーニング、デプロイ Earned 7月 22, 2024 EDT
Launching into Machine Learning - 日本語版 Earned 7月 20, 2024 EDT
Google Cloud における AI と ML の概要 Earned 7月 19, 2024 EDT
App Deployment, Debugging, and Performance - 日本語版 Earned 1月 24, 2024 EST
Google Cloud での Kubernetes アプリケーションのデプロイ Earned 1月 23, 2024 EST
Firebase を使用したサーバーレス アプリの開発 Earned 1月 19, 2024 EST
Google Kubernetes Engine を使ってみる Earned 1月 18, 2024 EST
Cloud Run でのサーバーレス アプリケーションの開発 Earned 1月 16, 2024 EST
Hybrid Cloud Modernizing Applications with Anthos Earned 1月 11, 2024 EST
Application Development with Cloud Run Earned 1月 4, 2024 EST
Securing and Integrating Components of Your Application - 日本語版 Earned 12月 14, 2023 EST
Getting Started with Application Development - 日本語版 Earned 12月 4, 2023 EST
Google Cloud の基礎: コア インフラストラクチャ Earned 11月 20, 2023 EST

「Google Cloud コンピューティングの基礎」クエストを修了してスキルバッジを獲得しましょう。 クエストでは、Compute Engine を使用して、仮想マシン(VM)、永続ディスク、ウェブサーバーを操作する方法を学習します。 スキルバッジは、 Google Cloud のプロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジ クエストと最終評価チャレンジラボを完了し、 デジタルバッジを獲得してネットワークで共有しましょう。

詳細

このコースでは、データを AI 活用へつなげるためのワークフローに役立つ AI 搭載の機能スイート、Gemini in BigQuery について説明します。この機能スイートには、データの探索と準備、コード生成とトラブルシューティング、ワークフローの検出と可視化などが含まれます。このコースでは、概念の説明、実際のユースケース、ハンズオンラボを通じて、データ実務者が生産性を高め、開発パイプラインを迅速化できるよう支援します。

詳細

このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。

詳細

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

詳細

企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

詳細

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

詳細

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

詳細

Vertex AI での ML ソリューションの構築とデプロイ コースを修了して、 中級スキルバッジを獲得しましょう。このコースでは、Google Cloud の Vertex AI プラットフォーム、AutoML、カスタム トレーニング サービスを使用して、 ML モデルのトレーニング、評価、チューニング、説明、デプロイを行う方法を学びます。 このスキルバッジ コースは、データ サイエンティストと ML エンジニアのプロフェッショナルを 対象としています。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。

詳細

「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了し、 スキルバッジを獲得してネットワークで共有しましょう。

詳細

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

詳細

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

詳細

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

詳細

このコースでは、ML ワークフローに対する実践的なアプローチを取り上げます。具体的には、いくつかの ML のビジネス要件とユースケースに取り組む ML チームをケーススタディ形式で紹介します。このチームは、データ マネジメントとガバナンスに必要なツールを理解し、データの前処理に最適なアプローチを検討する必要があります。 2 つのユースケースに対して ML モデルを構築するための 3 つのオプションがチームに提示されます。このコースでは、チームの目標を達成するために、AutoML、BigQuery ML、カスタム トレーニングを使用する理由について説明します。

詳細

このコースでは、本番環境で高パフォーマンスな ML システムを構築するためのコンポーネントとベスト プラクティスについて学習します。また、ML システムを構築するうえで最も一般的な考慮事項を紹介します。これには、静的トレーニング、動的トレーニング、静的な推論、動的な推論、分散型 TensorFlow、TPU などが含まれます。このコースでは、優れた予測能力にとどまらない、優れた ML システムの特性を探索することに焦点を当てています。

詳細

このコースでは、Google Cloud 上で本番環境の ML システムをデプロイ、評価、モニタリング、運用するための MLOps ツールとベスト プラクティスについて説明します。MLOps は、本番環境 ML システムのデプロイ、テスト、モニタリング、自動化に重点を置いた規範です。 受講者は、SDK レイヤで Vertex AI Feature Store のストリーミング取り込みを使用する実践的な演習を受けられます。

詳細

このコースでは、Google Cloud 上で本番環境の ML システムをデプロイ、評価、モニタリング、運用するための MLOps ツールとベスト プラクティスについて説明します。MLOps は、本番環境 ML システムのデプロイ、テスト、モニタリング、自動化に重点を置いた規範です。機械学習エンジニアリングの担当者は、ツールを活用して、デプロイしたモデルの継続的な改善と評価を行います。また、データ サイエンティストと協力して、あるいは自らがデータ サイエンティストとして、最も効果的なモデルを迅速かつ正確にデプロイできるようモデルを開発します。

詳細

このコースでは、Vertex AI Feature Store を使用するメリット、ML モデルの精度を向上させる方法、最も有効な特徴を抽出できるデータ列の見極め方について説明します。また、BigQuery ML、Keras、TensorFlow を使用した特徴量エンジニアリングに関するコンテンツとラボも用意されています。

詳細

このコースでは、TensorFlow と Keras を使用した ML モデルの構築、ML モデルの精度の向上、スケーリングに対応した ML モデルの作成について取り上げます。

詳細

このコースでは、まず、データ品質を向上させる方法や探索的データ分析を行う方法など、データについての議論から始めます。Vertex AI AutoML について確認し、コードを一切記述せずに ML モデルを構築、トレーニング、デプロイする方法を説明します。また、BigQuery ML のメリットを確認します。その後、ML モデルを最適化する方法、一般化とサンプリングを活用してカスタム トレーニング向けに ML モデルの品質を評価する方法を説明します。

詳細

このコースでは、予測 AI と生成 AI の両方のプロジェクトを構築できる、Google Cloud の AI および機械学習(ML)サービスについて紹介します。AI の基盤、開発、ソリューションを含むデータから AI へのライフサイクル全体で利用可能なテクノロジー、プロダクト、ツールについて説明するとともに、魅力的な学習体験と実践的なハンズオン演習を通じて、データ サイエンティスト、AI 開発者、ML エンジニアの方々がスキルや知識を強化できるようサポートすることを目指しています。

詳細

Course Description:

詳細

Google Cloud での Kubernetes アプリケーションのデプロイ コースの中級スキルバッジを獲得できるアクティビティを修了すると、 Docker コンテナ イメージの構成とビルド、Google Kubernetes Engine(GKE)クラスタの作成と管理、kubectl を活用した効率的な クラスタ管理、堅牢な継続的デリバリー(CD)による Kubernetes アプリケーションのデプロイ手法といったスキルを実証できます。

詳細

「Firebase を使用したサーバーレス アプリの開発」の中級スキルバッジを獲得すると、 Firebase を使用したサーバーレス ウェブ アプリケーションの設計とビルド、 データベース管理における Firestore の活用、Cloud Build を使用したデプロイ プロセスの自動化、 アプリケーションと Google アシスタント機能の統合といったスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを修了してスキルバッジを獲得し、 ネットワークで共有しましょう。

詳細

「Google Kubernetes Engine を使ってみる」コースへようこそ。Kubernetes にご興味をお持ちいただきありがとうございます。Kubernetes は、アプリケーションとハードウェア インフラストラクチャとの間にあるソフトウェア レイヤです。Google Kubernetes Engine は、Google Cloud 上のマネージド サービスとしての Kubernetes を提供します。 このコースでは、Google Kubernetes Engine(一般に GKE と呼ばれています)の基礎と、Google Cloud でアプリケーションをコンテナ化して実行する方法を学びます。このコースでは、まず Google Cloud の基本事項を確認します。続けて、コンテナ、Kubernetes、Kubernetes アーキテクチャ、Kubernetes オペレーションの概要について学びます。

詳細

「Cloud Run でのサーバーレス アプリケーションの開発」コースの中級スキルバッジを獲得すると、 データ マネジメントのための Cloud Run と Cloud Storage の統合、 Cloud Run と Pub/Sub を使用した復元力のある非同期システムの構築、 Cloud Run を使用した REST API ゲートウェイの構築、Cloud Run でのサービスの構築とデプロイといったスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジです。 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを完了し、スキルバッジを獲得して ネットワークで共有しましょう。

詳細

Course four of the Anthos series prepares students to consider multiple approaches for modernizing applications and services within Anthos environments. Topics include optimizing workloads on serverless platforms and migrating workloads to Anthos. This course is a continuation of course three, Anthos on Bare Metal, and assumes direct experience with the topics covered in that course.

詳細

This course introduces you to fundamentals, practices, capabilities and tools applicable to modern cloud-native application development using Google Cloud Run. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to on Google Cloud using Cloud Run.design, implement, deploy, secure, manage, and scale applications

詳細

Course Description:

詳細

アプリケーション デベロッパーは、このコースを通して、Google Cloud のマネージド サービスをシームレスに統合するクラウドネイティブ アプリケーションの設計方法と開発方法を学びます。講義、デモ、ハンズオンラボを通して、アプリケーション開発のベスト プラクティスを適用する方法、さらに、オブジェクト ストレージやリレーショナル データ、キャッシュ保存、分析に適切な Google Cloud ストレージ サービスを使用する方法を学習します。 各ラボのいずれかのバージョンを修了する必要があります。各ラボは Node.js で提供されます。ほとんどの場合、同じラボが Python または Java でも提供されます。各ラボをご希望の言語で修了できます。 これは「Developing Applications with Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Securing and Integrating Components of your Application」コースに登録してください。

詳細

Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。

詳細