Join Sign in

Michelangelo Martorana

Member since 2023

Machine Learning Operations (MLOps) for Generative AI Earned авг. 20, 2025 EDT
Introduction to Large Language Models Earned авг. 20, 2025 EDT
Introduction to Generative AI Earned авг. 20, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned авг. 19, 2025 EDT
Machine Learning Operations (MLOps): Getting Started Earned авг. 19, 2025 EDT
Feature Engineering Earned июля 7, 2023 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned мая 26, 2023 EDT
Data Lake Modernization on Google Cloud: Cloud Composer Earned апр. 11, 2023 EDT
How Google Does Machine Learning Earned марта 14, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned марта 6, 2023 EST

This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.

Learn more

This is an introductory level micro-learning course that explores what large language models (LLM) are, the use cases where they can be utilized, and how you can use prompt tuning to enhance LLM performance. It also covers Google tools to help you develop your own Gen AI apps.

Learn more

This is an introductory level microlearning course aimed at explaining what Generative AI is, how it is used, and how it differs from traditional machine learning methods. It also covers Google Tools to help you develop your own Gen AI apps.

Learn more

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Learn more

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Learn more

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Learn more

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Learn more

Welcome to Cloud Composer, where we discuss how to orchestrate data lake workflows with Cloud Composer.

Learn more

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

Learn more

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Learn more