Teilnehmen Anmelden

Fendy Lomanjaya

Mitglied seit 2024

Gold League

41510 Punkte
Develop Advanced Enterprise Search and Conversation Applications Earned Mär 14, 2025 EDT
Deploy, Test & Evaluate Gen AI Apps Earned Mär 13, 2025 EDT
Orchestrating Gen AI Applications with LangChain Earned Mär 12, 2025 EDT
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned Mär 11, 2025 EDT
Rich-Dokumente mit Gemini Multimodal und Multimodal RAG untersuchen Earned Mär 1, 2025 EST
Custom Search with Embeddings in Vertex AI Earned Feb 28, 2025 EST
Vektorsuche und Einbettungen Earned Feb 27, 2025 EST
Generative KI mit der Gemini API in Vertex AI nutzen Earned Feb 25, 2025 EST
Building Gen AI Apps with Vertex AI: Prompting and Tuning Earned Feb 25, 2025 EST
ML-Lösungen mit Vertex AI erstellen und bereitstellen Earned Sep 13, 2024 EDT
Daten für ML-APIs in Google Cloud vorbereiten Earned Sep 11, 2024 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Sep 7, 2024 EDT
Machine Learning Operations (MLOps): Getting Started Earned Sep 6, 2024 EDT
Recommendation Systems on Google Cloud Earned Sep 6, 2024 EDT
Natural Language Processing on Google Cloud Earned Aug 22, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned Aug 19, 2024 EDT
Production Machine Learning Systems Earned Aug 18, 2024 EDT
Feature Engineering Earned Aug 2, 2024 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Jul 30, 2024 EDT
Launching into Machine Learning Earned Jul 26, 2024 EDT
Einführung in KI und maschinelles Lernen in Google Cloud Earned Jul 23, 2024 EDT

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

Weitere Informationen

All applications, including generative AI applications, should be deployed securely & have their performance monitored. In this course, you will explore a pattern for easily securing prototype generative AI applications for internal tool use or customer demos. Additionally, you will learn strategies to unit test generative AI applications and evaluate their performance with the Rapid Evaluation API.

Weitere Informationen

This course equips full-stack mobile and web developers with the skills to integrate generative AI features into their applications using LangChain. You'll learn how to leverage LangChain’s capabilities for backend flows and seamless model execution, all within the familiar environment of Python. The course guides you through the entire process, from prototyping to production, ensuring a smooth journey in building next-generation AI-powered applications.

Weitere Informationen

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Rich-Dokumente mit Gemini Multimodal und Multimodal RAG untersuchen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Verwenden von multimodalen Prompts, um Informationen aus Text- und Bilddaten zu gewinnen; Erstellen einer Videobeschreibung und Abrufen von zusätzlichen, über das Video hinausgehenden Informationen unter Verwendung von Multimodalität mit Gemini; Erstellen von Metadaten von Dokumenten mit Text und Bildern; Ermitteln aller relevanten Textabschnitte und Drucken von Zitationen durch Nutzung von multimodaler Retrieval-Augmented Generation (RAG) mit Gemini. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Sk…

Weitere Informationen

This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.

Weitere Informationen

In diesem Kurs lernen Sie KI-basierte Suchtechnologien, Tools und Anwendungen kennen. Er umfasst folgende Themen: die semantische Suche mithilfe von Vektoreinbettungen, die Hybridsuche, bei der semantische und stichwortbezogene Ansätze kombiniert werden, und Retrieval-Augmented Generation (RAG), die KI-Halluzinationen durch einen fundierten KI-Agenten minimiert. Sie sammeln praktische Erfahrungen mit der Vektorsuche in Vertex AI zum Entwickeln einer intelligenten Suchmaschine.

Weitere Informationen

Mit dem Skill-Logo Generative KI mit der Gemini API in Vertex AI nutzen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Textgenerierung, Bild- und Videoanalyse für eine verbesserte Erstellung von Inhalten und die Verwendung von Funktionsaufrufen in der Gemini API. Sie erfahren, wie Sie ausgefeilte Gemini-Techniken einsetzen, multimodale Inhalte erstellen und in KI-Projekten noch mehr Möglichkeiten nutzen können.

Weitere Informationen

(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.

Weitere Informationen

Mit dem Skill-Logo zum Kurs ML-Lösungen mit Vertex AI erstellen und bereitstellen weisen Sie fortgeschrittene Kenntnisse nach. Sie lernen in diesem Kurs, wie Sie die Vertex AI-Plattform von Google Cloud, AutoML und benutzerdefinierte Trainingsdienste nutzen, um Machine-Learning-Modelle zu trainieren, zu bewerten, abzustimmen, zu erklären und bereitzustellen. Dieser Kurs richtet sich an professionelle Data Scientists und Machine Learning Engineers. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über Produkte und Dienste von Google Cloud belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie diese Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Weitere Informationen

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Weitere Informationen

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Weitere Informationen

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Weitere Informationen

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Weitere Informationen

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Weitere Informationen

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Weitere Informationen

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Weitere Informationen

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Weitere Informationen

In diesem Kurs lernen Sie die KI- und ML-Angebote von Google Cloud für Projekte mit prädiktiver und generativer KI kennen. Dabei werden die Technologien, Produkte und Tools vorgestellt, die für den gesamten Lebenszyklus der Datenaufbereitung für KI verfügbar sind. Der Kurs umfasst KI‑Grundlagen, ‑Entwicklung und ‑Lösungen. Data Scientists, KI-Entwickler und ML-Engineers sollen in diesem Kurs ihre Fähigkeiten und Kenntnisse durch ansprechende Lernangebote sowie praxisorientierte Übungen erweitern.

Weitere Informationen