raman nayak
Menjadi anggota sejak 2022
Gold League
91564 poin
Menjadi anggota sejak 2022
This is an introductory course to all solutions in the Conversational AI portfolio and the Gen AI features that are available to transform them. The course also explores the business case around Conversational AI, and the use cases and user personas addressed by the solution. Please note Dialogflow CX was recently renamed to Conversational Agents and this course is in the process of being updated to reflect the new product name for Dialogflow CX.
Gen AI Agents: Transform Your Organization is the fifth and final course of the Gen AI Leader learning path. This course explores how organizations can use custom gen AI agents to help tackle specific business challenges. You gain hands-on practice building a basic gen AI agent, while exploring the components of these agents, such as models, reasoning loops, and tools.
Transform Your Work With Gen AI Apps is the fourth course of the Gen AI Leader learning path. This course introduces Google’s gen AI applications, such as Google Workspace with Gemini and NotebookLM. It guides you through concepts like grounding, retrieval augmented generation, constructing effective prompts and building automated workflows.
Gen AI: Navigate the Landscape is the third course of the Gen AI Leader learning path. Gen AI is changing how we work and interact with the world around us. But as a leader, how can you harness its power to drive real business outcomes? In this course, you explore the different layers of building gen AI solutions, Google Cloud’s offerings, and the factors to consider when selecting a solution.
Gen AI: Unlock Foundational Concepts is the second course of the Gen AI Leader learning path. In this course, you unlock the foundational concepts of generative AI by exploring the differences between AI, ML, and gen AI, and understanding how various data types enable generative AI to address business challenges. You also gain insights into Google Cloud strategies to address the limitations of foundation models and the key challenges for responsible and secure AI development and deployment.
Gen AI: Beyond the Chatbot is the first course of the Gen AI Leader learning path and has no prerequisites. This course aims to move beyond the basic understanding of chatbots to explore the true potential of generative AI for your organization. You explore concepts like foundation models and prompt engineering, which are crucial for leveraging the power of gen AI. The course also guides you through important considerations you should make when developing a successful gen AI strategy for your organization.
Kursus ini mengeksplorasi solusi Retrieval-Augmented Generation (RAG) di BigQuery untuk memitigasi halusinasi AI. Kursus ini akan memperkenalkan alur kerja RAG yang mencakup pembuatan embedding, penelusuran ruang vektor, dan pembuatan jawaban yang lebih baik. Kursus ini akan menjelaskan alasan konseptual di balik langkah-langkah ini dan implementasi praktisnya dengan BigQuery. Di akhir kursus, peserta akan dapat membangun pipeline RAG menggunakan BigQuery dan model AI generatif seperti Gemini dan model embedding untuk menangani kasus penggunaan halusinasi AI mereka sendiri.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of Migration from Teradata to BigQuery using the Data Transfer Service and the Teradata TPT Export Utility. Sample Data will be used during both methods. Learners will complete a challenge lab that focuses on the process of transferring both schema, data and SQL from a Teradata data warehouse to BigQuery.
In this course, you explore the four components that make up the BigQuery Migration Service. They are Migration Assessment, SQL Translation, Data Transfer Service, and Data Validation. You will use each of these tools to perform a migration using to BigQuery.
Imagen provides a suite of generative AI tools to help you accelerate your creative workflows. This course provides you with demonstrations of all the key features currently found in Imagen.
Padukan keahlian Google di bidang penelusuran dan AI dengan Agentspace, alat perusahaan yang dirancang untuk membantu karyawan menemukan informasi spesifik dari penyimpanan dokumen, email, chat, sistem tiket, dan sumber data lain, semuanya dari satu kotak penelusuran. Asisten Agentspace juga dapat membantu Anda bertukar pikiran, melakukan riset, membuat kerangka dokumen, serta mengambil tindakan seperti mengundang rekan kerja ke acara kalender untuk mempercepat pekerjaan dan kolaborasi berbasis pengetahuan dalam berbagai bentuk.
Do you want to keep your users engaged by suggesting content they'll love? This course equips you with the skills to build a cutting-edge recommendations app using your own data with no prior machine learning knowledge. You learn to leverage AI Applications to build recommendation applications so that audiences can discover more personalized content, like what to watch or read next, with Google-quality results customized using optimization objectives.
In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Menjelajahi teknologi, alat, dan aplikasi penelusuran yang didukung AI dalam kursus ini. Mempelajari penelusuran semantik dengan memanfaatkan embedding vektor, penelusuran campuran yang menggabungkan pendekatan semantik dan kata kunci, serta Retrieval-Augmented Generation (RAG) yang meminimalkan halusinasi AI sebagai agen AI yang di-grounding. Mendapatkan pengalaman praktis dengan Vertex AI Vector Search untuk membangun mesin telusur yang cerdas.
This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
Kursus ini memperkenalkan penawaran AI dan machine learning (ML) di Google Cloud yang membangun project AI prediktif dan generatif. Kursus ini akan membahas teknologi, produk, dan alat yang tersedia di seluruh siklus proses data ke AI, yang mencakup fondasi, pengembangan, dan solusi AI. Kursus ini bertujuan membantu data scientist, developer AI, dan engineer ML meningkatkan keterampilan dan pengetahuan mereka melalui pengalaman belajar yang menarik dan latihan praktik langsung.
Dalam kursus ini, Anda akan mempelajari cara Gemini, kolaborator yang didukung AI generatif dari Google Cloud, dalam membantu engineer jaringan membuat, mengupdate, dan memelihara jaringan VPC. Anda akan mempelajari cara memanfaatkan Gemini untuk memberikan panduan spesifik untuk tugas-tugas jaringan Anda, lebih dari yang ditawarkan mesin telusur. Dengan menggunakan lab interaktif, Anda akan melihat cara Gemini dalam mempermudah urusan Anda dengan jaringan VPC Google Cloud. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu engineer mengelola infrastruktur. Anda akan mempelajari cara memerintah Gemini untuk menemukan dan memahami log aplikasi, membuat cluster GKE, dan menyelidiki cara membuat lingkungan build. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan alur kerja DevOps. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu Anda mengamankan lingkungan dan resource cloud. Anda akan mempelajari cara men-deploy contoh workload ke dalam lingkungan di Google Cloud, mengidentifikasi kesalahan konfigurasi keamanan dengan Gemini, dan memperbaiki kesalahan konfigurasi keamanan dengan Gemini. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan postur keamanan cloud. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu Anda menggunakan produk dan layanan Google untuk mengembangkan, menguji, men-deploy, dan mengelola aplikasi. Dengan bantuan Gemini, Anda belajar cara mengembangkan dan membangun aplikasi web, memperbaiki error dalam aplikasi, mengembangkan pengujian, dan mengkueri data. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan siklus proses pengembangan software (SDLC). Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu administrator menyediakan infrastruktur. Anda akan mempelajari cara memerintah Gemini untuk menjelaskan infrastruktur, men-deploy cluster GKE, dan memperbarui infrastruktur yang ada. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan alur kerja deployment GKE. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
In this course, you'll learn about Kubernetes and Google Kubernetes Engine (GKE) security; logging and monitoring; and using Google Cloud managed storage and database services from within GKE. This is the second course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Reliable Google Cloud Infrastructure: Design and Process course or the Hybrid Cloud Infrastructure Foundations with Anthos course.
Kursus ini membekali peserta dengan keterampilan untuk membangun solusi yang sangat andal dan efisien di Google Cloud menggunakan pola desain yang telah terbukti. Kursus ini merupakan kelanjutan dari kursus Membangun dengan Google Compute Engine atau Membangun dengan Google Kubernetes Engine dan memberikan pengalaman interaktif dengan teknologi yang dibahas dalam kursus tersebut. Melalui kombinasi presentasi, aktivitas desain, dan lab interaktif, peserta akan mempelajari cara menentukan serta menyeimbangkan kebutuhan bisnis dan teknis untuk merancang deployment Google Cloud yang sangat andal, sangat tersedia, aman, dan hemat biaya.
Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Lingkungan Pengembangan Aplikasi di Google Cloud, yang memungkinkan Anda mempelajari cara membangun dan menghubungkan infrastruktur cloud yang berpusat pada penyimpanan menggunakan kemampuan dasar teknologi berikut: Cloud Storage, Identity and Access Management, Cloud Functions, dan Pub/Sub. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud, serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Course two of the Architecting Hybrid Cloud with Anthos series prepares students to operate and observe Anthos environments. Through presentations and hands-on labs, participants explore adjusting existing clusters, setting up advanced traffic routing policies, securing communication across workloads, and observing clusters in Anthos. This course is a continuation of course one, Multi-Cluster, Multi-Cloud with Anthos, and assumes direct experience with the topics covered in that course.
Welcome to the second part of the two part course, Observability in Google Cloud. This course is all about application performance management tools, including Error Reporting, Cloud Trace, and Cloud Profiler.
In this course, you will learn the basic skills to implement secure and efficient DevSecOps practices on Google Cloud. You'll learn how to secure your development pipeline with Google Cloud services like Artifact Registry, Cloud Build, Cloud Deploy, and Binary Authorization. This enables you to build, test, and deploy containerized applications with security controls throughout the CI/CD pipeline.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Dapatkan badge keahlian dengan menyelesaikan kursus Membangun Jaringan Google Cloud yang Aman yang membahas resource yang terkait dengan beberapa jaringan untuk membangun, menskalakan, dan mengamankan aplikasi Anda di Google Cloud. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian dan challenge lab penilaian akhir untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
Learn to secure your deployments on Google Cloud, including: how to use Cloud Armor bot management to mitigate bot risk and control access from automated clients; use Cloud Armor denylists to restrict or allow access to your HTTP(S) load balancer at the edge of the Google Cloud; apply Cloud Armor security policies to restrict access to cache objects on Cloud CDN and Google Cloud Storage; and mitigate common vulnerabilities using Cloud Armor WAF rules.
This course will familiarize you with the core functionality of Chronicle, including the user interface, connections, and settings.
Learn which Mandiant products directly enhance or augment capabilities provided by Chronicle SIEM and SOAR and how those products integrate into our workflow.
This course will provide you with an overview of SIEM technology to set the stage for the differentiation and expansion of capabilities that Chronicle SIEM provides.
Welcome to the second course in the networking and Google Cloud series routing and addressing. In this course, we'll cover the central routing and addressing concepts that are relevant to Google Cloud's networking capabilities. Module one will lay the foundation by exploring network routing and addressing in Google Cloud, covering key building blocks such as routing IPv4, bringing your own IP addresses and setting up cloud DNS. In Module two will shift our focus to private connection options, exploring use cases and methods for accessing Google and other services privately using internal IP addresses. By the end of this course, you'll have a solid grasp of how to effectively route and address your network traffic within Google Cloud.
Selesaikan badge keahlian tingkat menengah Menerapkan Dasar-Dasar Keamanan Cloud di Google Cloud untuk menunjukkan kemahiran dalam hal berikut: membuat dan menetapkan peran dengan Identity and Access Management (IAM); membuat dan mengelola akun layanan; memungkinkan konektivitas pribadi di seluruh jaringan virtual private cloud (VPC); membatasi akses aplikasi menggunakan Identity-Aware Proxy; mengelola kunci dan data terenkripsi dengan Cloud Key Management Service (KMS); dan membuat cluster Kubernetes pribadi. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.
Complete the intermediate Mitigate Threats and Vulnerabilities with Security Command Center skill badge to demonstrate skills in the following: preventing and managing environment threats, identifying and mitigating application vulnerabilities, and responding to security anomalies.
Networking in Google cloud is a 6 part course series. Welcome to the first course of our six part course series, Networking in Google Cloud: Fundamentals. This course provides a comprehensive overview of core networking concepts, including networking fundamentals, virtual private clouds (VPCs), and the sharing of VPC networks. Additionally, the course covers network logging and monitoring techniques.
Earn the intermediate skill badge by completing the Implement CI/CD Pipelines on Google Cloud course where you will learn how to use Artifact Registry, Cloud Build, and Cloud Deploy. You will interact with the Cloud console, Google Cloud CLI, Cloud Run, and GKE. This course will teach you how to build continuous integration pipelines, store and secure artifacts, scan for vulnerabilities, attest to the validity of approved releases. Additionally, you'll get hands-on experience deploying applications to both GKE and Cloud Run. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an skillbadge hands-on environment. Complete this skill badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
This course helps learners prepare for the Professional Cloud Security Engineer (PCSE) Certification exam. Learners will be exposed to and engage with exam topics through a series of lectures, diagnostic questions, and knowledge checks. After completing this course, learners will have a personalized workbook that will guide them through the rest of their certification readiness journey.
In many IT organizations, incentives are not aligned between developers, who strive for agility, and operators, who focus on stability. Site reliability engineering, or SRE, is how Google aligns incentives between development and operations and does mission-critical production support. Adoption of SRE cultural and technical practices can help improve collaboration between the business and IT. This course introduces key practices of Google SRE and the important role IT and business leaders play in the success of SRE organizational adoption.
In this course, you learn how to secure your APIs. You explore the security concerns you will encounter for your APIs. You learn about OAuth, the primary authorization method for REST APIs. You will learn about JSON Web Tokens (JWTs) and federated security. You also learn about securing against malicious requests, safely sending requests across a public network, and how to secure your data for users of Apigee. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform. This is the second course of the Developing APIs with Google Cloud's Apigee API Platform series. After completing this course, enroll in the API Development on Google Cloud's Apigee API Platform course.
In this course, you learn how to design APIs, and how to use OpenAPI specifications to document them. You learn about the API life cycle, and how the Apigee API platform helps you manage all aspects of the life cycle. You learn about how APIs can be designed using API proxies, and how APIs are packaged as API products to be used by app developers. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform. This is the first course of the Developing APIs with Google Cloud's Apigee API Platform series. After completing this course, enroll in the API Security on Google Cloud's Apigee API Platform course.
Obtain a competitive advantage through DevOps. DevOps is an organizational and cultural movement that aims to increase software delivery velocity, improve service reliability, and build shared ownership among software stakeholders. In this course you will learn how to use Google Cloud to improve the speed, stability, availability, and security of your software delivery capability. DevOps Research and Assessment has joined Google Cloud. How does your team measure up? Take this five question multiple-choice quiz and find out!
Earn the intermediate skill badge by completing the Implement CI/CD Pipelines on Google Cloud course where you will learn how to use Artifact Registry, Cloud Build, and Cloud Deploy. You will interact with the Cloud console, Google Cloud CLI, Cloud Run, and GKE. This course will teach you how to build continuous integration pipelines, store and secure artifacts, scan for vulnerabilities, attest to the validity of approved releases. Additionally, you'll get hands-on experience deploying applications to both GKE and Cloud Run. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an skillbadge hands-on environment. Complete this skill badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
This self-paced training course gives participants broad study of security controls and techniques on Google Cloud. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure Google Cloud solution, including Cloud Storage access control technologies, Security Keys, Customer-Supplied Encryption Keys, API access controls, scoping, shielded VMs, encryption, and signed URLs. It also covers securing Kubernetes environments.
Get Anthos Ready. This Google Kubernetes Engine-centric quest of best practice hands-on labs focuses on security at scale when deploying and managing production GKE environments -- specifically role-based access control, hardening, VPC networking, and binary authorization.
In this self-paced training course, participants learn mitigations for attacks at many points in a Google Cloud-based infrastructure, including Distributed Denial-of-Service attacks, phishing attacks, and threats involving content classification and use. They also learn about the Security Command Center, cloud logging and audit logging, and using Forseti to view overall compliance with your organization's security policies.
This self-paced training course gives participants broad study of security controls and techniques on Google Cloud. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure Google Cloud solution, including Cloud Identity, Resource Manager, IAM, Virtual Private Cloud firewalls, Cloud Load Balancing, Cloud Peering, Cloud Interconnect, and VPC Service Controls. This is the first course of the Security in Google Cloud series. After completing this course, enroll in the Security Best Practices in Google Cloud course.
This course, Architecting with Google Kubernetes Engine: Workloads - Locales, is intended for non-English learners. If you want to take this course in English, please enroll in Architecting with Google Kubernetes Engine: Workloads. In this course, "Architecting with Google Kubernetes Engine: Workloads," you learn about performing Kubernetes operations; creating and managing deployments; the tools of GKE networking; and how to give your Kubernetes workloads persistent storage. This is the second course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Reliable Google Cloud Infrastructure: Design and Process course or the Hybrid Cloud Infrastructure Foundations with Anthos course.
"This course, Architecting with Google Kubernetes Engine: Foundations - Locales, is intended for non-English learners. If you want to take this course in English, please enroll in Architecting with Google Kubernetes Engine: Foundations". In this course, "Architecting with Google Kubernetes Engine: Foundations," you get a review of the layout and principles of Google Cloud, followed by an introduction to creating and managing software containers and an introduction to the architecture of Kubernetes. This is the first course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Architecting with Google Kubernetes Engine: Workloads course.
This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.
Keamanan adalah fitur layanan Google Cloud yang tidak dapat dikompromikan, dan Google Cloud telah mengembangkan alat khusus untuk memastikan keamanan dan identitas di seluruh project Anda. Dalam kursus pengantar ini, Anda akan melakukan praktik langsung dengan Layanan Identity and Access Management (IAM) Google Cloud, yang merupakan layanan utama untuk mengelola akun pengguna dan virtual machine. Anda akan mendapatkan pengalaman dengan keamanan jaringan dengan menyediakan VPC dan VPN, serta mempelajari alat-alat yang tersedia untuk mendapatkan perlindungan dari ancaman keamanan dan kebocoran data.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.
Kursus ini memperkenalkan Vertex AI Studio, sebuah alat untuk berinteraksi dengan model AI generatif, membuat prototipe ide bisnis, dan meluncurkannya ke dalam produksi. Melalui kasus penggunaan yang imersif, pelajaran menarik, dan lab interaktif, Anda akan menjelajahi siklus proses dari perintah ke produk dan mempelajari cara memanfaatkan Vertex AI Studio untuk aplikasi multimodal Gemini, desain perintah, rekayasa perintah, dan tuning model. Tujuan kursus ini adalah agar Anda dapat memanfaatkan potensi AI generatif dalam project Anda dengan Vertex AI Studio.
This content is deprecated. Please see the latest version of the course, here.
Kursus Penjelajah AI Generatif - Vertex AI adalah sekumpulan lab yang membahas cara menggunakan AI Generatif di Google Cloud. Melalui lab ini, Anda akan mempelajari cara menggunakan model dalam rangkaian Vertex AI PaLM API, termasuk text-bison, chat-bison, dan textembedding-gecko. Anda juga akan mempelajari desain perintah, praktik terbaik, serta cara menggunakannya untuk pencarian ide, klasifikasi teks, ekstraksi teks, peringkasan teks, dan banyak lagi. Anda juga akan mempelajari cara menyesuaikan model dasar dengan melatihnya melalui pelatihan kustom Vertex AI dan men-deploy-nya ke endpoint Vertex AI.
Kursus ini memberi Anda sinopsis tentang arsitektur encoder-decoder, yang merupakan arsitektur machine learning yang canggih dan umum untuk tugas urutan-ke-urutan seperti terjemahan mesin, ringkasan teks, dan tanya jawab. Anda akan belajar tentang komponen utama arsitektur encoder-decoder serta cara melatih dan menyalurkan model ini. Dalam panduan lab yang sesuai, Anda akan membuat kode pada penerapan simpel arsitektur encoder-decoder di TensorFlow untuk pembuatan puisi dari awal.
Kursus ini menjelaskan cara membuat model keterangan gambar menggunakan deep learning. Anda akan belajar tentang berbagai komponen model keterangan gambar, seperti encoder dan decoder, serta cara melatih dan mengevaluasi model. Pada akhir kursus ini, Anda akan dapat membuat model keterangan gambar Anda sendiri dan menggunakannya untuk menghasilkan teks bagi gambar.
Kursus ini memperkenalkan Anda pada arsitektur Transformer dan model Representasi Encoder Dua Arah dari Transformer (Bidirectional Encoder Representations from Transformers atau BERT). Anda akan belajar tentang komponen utama arsitektur Transformer, seperti mekanisme self-attention, dan cara penggunaannya untuk membangun model BERT. Anda juga akan belajar tentang berbagai tugas yang dapat memanfaatkan BERT, seperti klasifikasi teks, menjawab pertanyaan, dan inferensi natural language. Kursus ini diperkirakan memakan waktu sekitar 45 menit untuk menyelesaikannya.
Dalam kursus ini Anda akan diperkenalkan dengan mekanisme atensi, yakni teknik efektif yang membuat jaringan neural berfokus pada bagian tertentu urutan input. Anda akan mempelajari cara kerja atensi, cara penggunaannya untuk meningkatkan performa berbagai tugas machine learning, termasuk terjemahan mesin, peringkasan teks, dan menjawab pertanyaan.
Kursus ini memperkenalkan model difusi, yaitu kelompok model machine learning yang belakangan ini menunjukkan potensinya dalam ranah pembuatan gambar. Model difusi mengambil inspirasi dari fisika, khususnya termodinamika. Dalam beberapa tahun terakhir, model difusi menjadi populer baik di dunia industri maupun penelitian. Model difusi mendasari banyak alat dan model pembuatan gambar yang canggih di Google Cloud. Kursus ini memperkenalkan Anda pada teori yang melandasi model difusi dan cara melatih serta men-deploy-nya di Vertex AI.
Seiring semakin meningkatnya penggunaan Kecerdasan Buatan dan Machine Learning di kalangan perusahaan, proses membangunnya secara bertanggung jawab juga menjadi semakin penting. Membicarakan responsible AI mungkin lebih mudah bagi banyak orang daripada mempraktikkannya. Jika Anda tertarik untuk mempelajari cara mengoperasionalkan responsible AI dalam organisasi Anda, kursus ini cocok untuk Anda. Dalam kursus ini, Anda akan mempelajari bagaimana Google Cloud mengoperasionalkan responsible AI, dengan praktik terbaik dan pelajaran yang dapat dipetik. Hal ini berguna sebagai framework bagi Anda untuk membangun pendekatan responsible AI.
Dapatkan badge keahlian dengan menyelesaikan kursus Introduction to Generative AI, Introduction to Large Language Models, dan Introduction to Responsible AI. Dengan berhasil menyelesaikan kuis akhir, Anda membuktikan pemahaman Anda tentang konsep dasar AI generatif. Badge keahlian adalah badge digital yang diberikan oleh Google Cloud sebagai pengakuan atas pengetahuan Anda tentang produk dan layanan Google Cloud. Pamerkan badge keahlian Anda dengan menampilkan profil Anda kepada publik dan menambahkannya ke profil media sosial Anda.
Ini adalah kursus pengantar pembelajaran mikro yang dimaksudkan untuk menjelaskan responsible AI, alasan pentingnya responsible AI, dan cara Google mengimplementasikan responsible AI dalam produknya. Kursus ini juga memperkenalkan 7 prinsip AI Google.
Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
Dasar-Dasar Google Cloud: Infrastruktur Inti memperkenalkan konsep dan terminologi penting untuk bekerja dengan Google Cloud. Melalui video dan lab interaktif, kursus ini menyajikan dan membandingkan banyak layanan komputasi dan penyimpanan Google Cloud, bersama dengan resource penting dan alat pengelolaan kebijakan.