Inscreva-se Fazer login

Shahenshah Ali Syed

Participante desde 2021

Liga Bronze

7060 pontos
Google Cloud: Prompt Engineering Guide Earned Aug 10, 2025 EDT
Conheça a IA generativa com a API Gemini na Vertex AI Earned Nov 9, 2024 EST
Building Gen AI Apps with Vertex AI: Prompting and Tuning Earned Nov 9, 2024 EST
Preparação para sua jornada da certificação Professional Data Engineer Earned Oct 14, 2024 EDT
Introdução à IA generativa Earned Feb 23, 2024 EST
Como criar pipelines de dados em lote no Google Cloud Earned Aug 1, 2022 EDT
Processamento de dados sem servidor com o Dataflow: fundamentos Earned Apr 5, 2022 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Português Brasileiro Earned Apr 1, 2022 EDT
Como criar sistemas de análise de streaming resilientes no Google Cloud Earned Mar 31, 2022 EDT
Como modernizar data lakes e data warehouses com o Google Cloud Earned Mar 28, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Português Brasileiro Earned Mar 24, 2022 EDT

Google Cloud : Prompt Engineering Guide examines generative AI tools, how they work. We'll explore how to combine Google Cloud knowledge with prompt engineering to improve Gemini responses.

Saiba mais

Conclua o selo de habilidade intermediário Conheça a IA generativa com a API Gemini na Vertex AI para demonstrar conhecimento nas seguintes atividades: geração de texto, análise de imagens e vídeos para criação de conteúdo aprimorado e aplicação de técnicas de chamada de função na API Gemini. Saiba como aproveitar as técnicas sofisticadas do Gemini, conhecer a geração de conteúdo multimodal e ampliar os recursos dos seus projetos com tecnologia de IA. Os selos de habilidade validam seu conhecimento prático sobre produtos específicos com avaliações em laboratórios e desafios. Ganhe um selo ao concluir um curso ou vá direto para o laboratório com desafio e receba seu selo hoje mesmo. Esses selos comprovam seu domínio em determinados assuntos, aprimoram seu currículo e, por fim, abrem mais portas no mercado de trabalho. Acesse seu perfil para ver os selos que você ganhou.

Saiba mais

(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.

Saiba mais

Este curso ajuda estudantes a criar um plano de estudo para o exame de certificação PDE (Professional Data Engineer). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.

Saiba mais

Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.

Saiba mais

Os pipelines de dados geralmente se encaixam em um desses três paradigmas: extração e carregamento (EL), extração, carregamento e transformação (ELT) ou extração, transformação e carregamento (ETL). Este curso descreve qual paradigma deve ser usado em determinadas situações e quando isso ocorre com dados em lote. Além disso, vamos falar sobre várias tecnologias no Google Cloud para transformação de dados, incluindo o BigQuery, a execução do Spark no Dataproc, gráficos de pipeline no Cloud Data Fusion e processamento de dados sem servidor com o Dataflow. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados no Google Cloud usando o Qwiklabs.

Saiba mais

Este é o primeiro de uma série de três cursos sobre processamento de dados sem servidor com o Dataflow. Nele, vamos relembrar o que é o Apache Beam e qual é a relação entre ele e o Dataflow. Depois, falaremos sobre a visão do Apache Beam e os benefícios do framework de portabilidade desse modelo de programação. Com esse processo, o desenvolvedor pode usar a linguagem de programação favorita com o back-end de execução que quiser. Em seguida, mostraremos como o Dataflow permite a separação entre a computação e o armazenamento para economizar dinheiro. Além disso, você vai aprender como as ferramentas de identidade, acesso e gerenciamento interagem com os pipelines do Dataflow. Por fim, vamos ver como implementar o modelo de segurança ideal para seu caso de uso no Dataflow.

Saiba mais

A incorporação de machine learning em pipelines de dados aumenta a capacidade de extrair insights dessas informações. Neste curso, mostramos as várias formas de incluir essa tecnologia em pipelines de dados do Google Cloud. Para casos de pouca ou nenhuma personalização, vamos falar sobre o AutoML. Para usar recursos de machine learning mais personalizados, vamos apresentar os Notebooks e o machine learning do BigQuery (BigQuery ML). No curso, você também vai aprender sobre a produção de soluções de machine learning usando a Vertex AI.

Saiba mais

O processamento de dados de streaming é cada vez mais usado pelas empresas para gerar métricas sobre as operações comerciais em tempo real. Neste curso, você vai aprender a criar pipelines de dados de streaming no Google Cloud. O Pub/Sub é apresentado como a ferramenta para gerenciar dados de streaming de entrada. No curso, também abordamos a aplicação de agregações e transformações a dados de streaming usando o Dataflow, além de formas de armazenar registros processados no BigQuery ou no Bigtable para análise. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados de streaming no Google Cloud usando o Qwiklabs.

Saiba mais

Os dois principais componentes de um pipeline de dados são data lakes e warehouses. Neste curso, destacamos os casos de uso para cada tipo de armazenamento e as soluções de data lake e warehouse disponíveis no Google Cloud de forma detalhada e técnica. Além disso, também descrevemos o papel de um engenheiro de dados, os benefícios de um pipeline de dados funcional para operações comerciais e analisamos por que a engenharia de dados deve ser feita em um ambiente de nuvem. Este é o primeiro curso da série "Engenharia de dados no Google Cloud". Após a conclusão, recomendamos que você comece o curso "Como criar pipelines de dados em lote no Google Cloud".

Saiba mais

Este curso apresenta os produtos e serviços de Big Data e machine learning do Google Cloud que auxiliam no ciclo de vida de dados para IA. Ele explica os processos, os desafios e os benefícios de criar um pipeline de Big Data e modelos de machine learning com a Vertex AI no Google Cloud.

Saiba mais