McElroy Hannah
メンバー加入日: 2021
ゴールドリーグ
9360 ポイント
メンバー加入日: 2021
In this course you will learn the key architectural considerations that need to be taken into account when designing for the implementation of Conversational AI solutions. Please note Dialogflow CX was recently renamed to Conversational Agents and CCAI Insights was renamed to Conversational Insights.
このコースでは、データを AI 活用へつなげるためのワークフローに役立つ AI 搭載の機能スイート、Gemini in BigQuery について説明します。この機能スイートには、データの探索と準備、コード生成とトラブルシューティング、ワークフローの検出と可視化などが含まれます。このコースでは、概念の説明、実際のユースケース、ハンズオンラボを通じて、データ実務者が生産性を高め、開発パイプラインを迅速化できるよう支援します。
This is an introductory course to all solutions in the Conversational AI portfolio and the Gen AI features that are available to transform them. The course also explores the business case around Conversational AI, and the use cases and user personas addressed by the solution. Please note Dialogflow CX was recently renamed to Conversational Agents and this course is in the process of being updated to reflect the new product name for Dialogflow CX.
このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。
企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。
この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
「Google Cloud ネットワークの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、 アプリケーションをデプロイしてモニタリングするための複数の方法について学びます。具体的には、IAM ロールの確認とプロジェクト アクセスの追加 / 削除、 VPC ネットワークの作成、Compute Engine VM のデプロイとモニタリング、 SQL クエリの記述、Compute Engine での VM のデプロイとモニタリング、Kubernetes を使用した複数のデプロイ アプローチによるアプリケーションのデプロイなどです。
「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。
「Google Kubernetes Engine を使ってみる」コースへようこそ。Kubernetes にご興味をお持ちいただきありがとうございます。Kubernetes は、アプリケーションとハードウェア インフラストラクチャとの間にあるソフトウェア レイヤです。Google Kubernetes Engine は、Google Cloud 上のマネージド サービスとしての Kubernetes を提供します。 このコースでは、Google Kubernetes Engine(一般に GKE と呼ばれています)の基礎と、Google Cloud でアプリケーションをコンテナ化して実行する方法を学びます。このコースでは、まず Google Cloud の基本事項を確認します。続けて、コンテナ、Kubernetes、Kubernetes アーキテクチャ、Kubernetes オペレーションの概要について学びます。
このオンデマンド速習コースでは、Google Cloud Platform が提供する包括的で柔軟なインフラストラクチャとプラットフォーム サービスについて紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してソリューションの各要素について学習し、演習を行います。これらの要素には、ネットワーク、システム、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。また、ネットワークの安全な相互接続、負荷分散、自動スケーリング、インフラストラクチャの自動化、マネージド サービスなど、実用的なソリューションの演習も行います。 受講条件: このコースで効果的に学習するには、次の条件を満たしている必要があります。 • Google Cloud Platform Fundamentals(Core Infrastructure または AWS Professionals)を修了しているか、同等の経験がある ##a dummy change • Essential Cloud Infrastructure: Foundation を修了しているか、同等の経験がある • Essential Cloud Infrastructure: Core Services を修了しているか、同等の経験がある • コマンドライン ツールと Linux オペレーティング システム環境についての基本的なスキルがある • システム運用の経験がある(オンプレミスまたはパブリック クラウド環境でのアプリケーションのデプロイと管理を含む) >>> よくある質問に記載のとおり、このコースに登録すると Qwiklabs の利用規約(https://qwiklabs.com/terms_of_service)に同意したことになります。<<<
このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの各要素について学習し、実際のデプロイを演習します。これらの要素には、ネットワークや仮想マシン、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。コンソールと Cloud Shell を使用して Google Cloud を運用する方法についても学習します。また、クラウド アーキテクトの役割、インフラストラクチャ設計の方法、Virtual Private Cloud(VPC)を使用した仮想ネットワークの構成、プロジェクト、ネットワーク、サブネットワーク、IP アドレス、ルート、ファイアウォール ルールについても学習します。
このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。
Learn how to design, develop, and deploy customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You'll also learn some best practices for integrating conversational solutions with your existing contact center software, establishing a framework for human agent assistance, and implementing solutions securely and at scale.