Inscreva-se Fazer login

Pratyush Behere

Participante desde 2022

Liga Bronze

800 pontos
Smart Analytics, Machine Learning, and AI on Google Cloud - Português Brasileiro Earned Oct 31, 2022 EDT
Como criar sistemas de análise de streaming resilientes no Google Cloud Earned Oct 26, 2022 EDT
Implementar o balanceamento de carga no Compute Engine Earned Oct 15, 2022 EDT
DEPRECATED BigQuery for Data Analysis Earned Oct 12, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Português Brasileiro Earned Sep 28, 2022 EDT
Como criar pipelines de dados em lote no Google Cloud Earned Sep 23, 2022 EDT
Como modernizar data lakes e data warehouses com o Google Cloud Earned Jun 21, 2022 EDT

A incorporação de machine learning em pipelines de dados aumenta a capacidade de extrair insights dessas informações. Neste curso, mostramos as várias formas de incluir essa tecnologia em pipelines de dados do Google Cloud. Para casos de pouca ou nenhuma personalização, vamos falar sobre o AutoML. Para usar recursos de machine learning mais personalizados, vamos apresentar os Notebooks e o machine learning do BigQuery (BigQuery ML). No curso, você também vai aprender sobre a produção de soluções de machine learning usando a Vertex AI.

Saiba mais

O processamento de dados de streaming é cada vez mais usado pelas empresas para gerar métricas sobre as operações comerciais em tempo real. Neste curso, você vai aprender a criar pipelines de dados de streaming no Google Cloud. O Pub/Sub é apresentado como a ferramenta para gerenciar dados de streaming de entrada. No curso, também abordamos a aplicação de agregações e transformações a dados de streaming usando o Dataflow, além de formas de armazenar registros processados no BigQuery ou no Bigtable para análise. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados de streaming no Google Cloud usando o Qwiklabs.

Saiba mais

Conquiste o selo de habilidade Implementar o balanceamento de carga no Compute Engine para demonstrar que você é capaz de: escrever comandos gcloud, usar o Cloud Shell, criar e implantar máquinas virtuais no Compute Engine e configurar balanceadores de carga HTTP e de rede. Um selo de habilidade é um selo digital exclusivo emitido pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Complete esse curso e o laboratório com desafio da avaliação final para receber o selo de habilidade que pode ser compartilhado com seus contatos.

Saiba mais

Want to learn the core SQL and visualization skills of a Data Analyst? Interested in how to write queries that scale to petabyte-size datasets? Take the BigQuery for Analyst Quest and learn how to query, ingest, optimize, visualize, and even build machine learning models in SQL inside of BigQuery.

Saiba mais

Este curso apresenta os produtos e serviços de Big Data e machine learning do Google Cloud que auxiliam no ciclo de vida de dados para IA. Ele explica os processos, os desafios e os benefícios de criar um pipeline de Big Data e modelos de machine learning com a Vertex AI no Google Cloud.

Saiba mais

Os pipelines de dados geralmente se encaixam em um desses três paradigmas: extração e carregamento (EL), extração, carregamento e transformação (ELT) ou extração, transformação e carregamento (ETL). Este curso descreve qual paradigma deve ser usado em determinadas situações e quando isso ocorre com dados em lote. Além disso, vamos falar sobre várias tecnologias no Google Cloud para transformação de dados, incluindo o BigQuery, a execução do Spark no Dataproc, gráficos de pipeline no Cloud Data Fusion e processamento de dados sem servidor com o Dataflow. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados no Google Cloud usando o Qwiklabs.

Saiba mais

Os dois principais componentes de um pipeline de dados são data lakes e warehouses. Neste curso, destacamos os casos de uso para cada tipo de armazenamento e as soluções de data lake e warehouse disponíveis no Google Cloud de forma detalhada e técnica. Além disso, também descrevemos o papel de um engenheiro de dados, os benefícios de um pipeline de dados funcional para operações comerciais e analisamos por que a engenharia de dados deve ser feita em um ambiente de nuvem. Este é o primeiro curso da série "Engenharia de dados no Google Cloud". Após a conclusão, recomendamos que você comece o curso "Como criar pipelines de dados em lote no Google Cloud".

Saiba mais