Dans ce cours, nous abordons en détail les composants et les bonnes pratiques de construction de systèmes de ML hautes performances dans des environnements de production. Nous verrons aussi certaines des considérations les plus courantes concernant la construction de ces systèmes, telles que l'entraînement statique, l'entraînement dynamique, l'inférence statique, l'inférence dynamique, les tâches TensorFlow distribuées et les TPU. Ce cours a pour objectif d'explorer les caractéristiques d'un bon système de ML, au-delà de sa capacité à effectuer des prédictions correctes.
Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les ingénieurs en machine learning utilisent des outils pour améliorer et évaluer en permanence les modèles déployés. Ils collaborent avec des data scientists (ou peuvent occuper ce poste) qui développent des modèles permettant de déployer de manière rapide et rigoureuse les solutions de machine learning les plus performantes.
Ce cours présente une approche pratique du workflow de ML avec une étude de cas dans laquelle une équipe est confrontée à plusieurs exigences métier et cas d'utilisation de ML. Cette équipe doit comprendre quels outils sont nécessaires pour gérer et gouverner les données, et trouver la meilleure approche pour les prétraiter. On présente à cette équipe trois options de création de modèles de ML pour deux cas d'utilisation spécifiques. Ce cours explique pourquoi l'équipe tire parti des avantages d'AutoML, de BigQuery ML ou de l'entraînement personnalisé pour atteindre ses objectifs.
Complete the introductory Create and Manage Bigtable Instances skill badge to demonstrate skills in the following: creating instances, designing schemas, querying data, and performing administrative tasks in Bigtable including monitoring performance and configuring node autoscaling and replication.
Ce cours est le premier d'une série en trois volets sur le traitement des données sans serveur avec Dataflow. Dans ce premier cours, nous allons commencer par rappeler ce qu'est Apache Beam et sa relation avec Dataflow. Ensuite, nous aborderons la vision d'Apache Beam et les avantages de son framework de portabilité, qui permet aux développeurs d'utiliser le langage de programmation et le backend d'exécution de leur choix. Nous vous montrerons aussi comment séparer le calcul du stockage et économiser de l'argent grâce à Dataflow, puis nous examinerons les interactions entre les outils de gestion de l'identification et des accès avec vos pipelines Dataflow. Enfin, nous verrons comment implémenter le modèle de sécurité adapté à votre cas d'utilisation sur Dataflow.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Ce cours présente les avantages liés à l'utilisation de Vertex AI Feature Store, ainsi que la manière d'améliorer la précision des modèles de ML et de déterminer les colonnes de données présentant les caractéristiques les plus utiles. Ce cours inclut également du contenu et des ateliers portant sur l'ingénierie des caractéristiques à l'aide de BigQuery ML, Keras et TensorFlow.
Ce cours porte sur la création de modèles de ML à l'aide de TensorFlow et Keras, l'amélioration de la précision des modèles de ML et l'écriture de modèles de ML pour une utilisation évolutive.
"Planning for a Google Workspace Deployment" est le dernier cours de la série "Google Workspace Administration". Dans ce cours, vous découvrirez la méthodologie et les bonnes pratiques de déploiement de Google. Vous suivrez Katelyn et Marcus lors de la planification du déploiement de Google Workspace chez Cymbal. Ils se concentreront sur les principaux aspects techniques du projet, à savoir le provisionnement, la distribution des e-mails, la migration des données et la coexistence, et identifieront la meilleure stratégie de déploiement pour chaque aspect. Vous verrez également toute l'importance de la gestion du changement lors du déploiement de Google Workspace, afin de s'assurer que les utilisateurs bénéficient d'une transition fluide vers Google Workspace et profitent des avantages de ce changement grâce à des communications, une assistance et des formations. Ce cours aborde des sujets théoriques et ne contient aucun exercice pratique. Si ce n'est pas déjà fait, veuillez annuler…
Ce cours apporte aux participants des compétences de gouvernance des données dans leur environnement Google Workspace. Les participants étudieront l'utilisation de règles de protection contre la perte de données dans Gmail et Drive afin de prévenir les fuites de données. Ils apprendront ensuite à utiliser Google Vault pour la conservation et la récupération des données. Ils découvriront ensuite comment configurer les régions de données et les paramètres d'exportation afin de se conformer à la réglementation. Enfin, ils verront comment classifier les données à l'aide d'étiquettes pour améliorer l'organisation et renforcer la sécurité.
Ce cours apprend aux participants à sécuriser leur environnement Google Workspace. Les participants mettront en place des règles de mot de passe sécurisées ainsi que la validation en deux étapes pour gérer l'accès des utilisateurs. Ils utiliseront ensuite l'outil d'investigation de sécurité afin d'identifier et de résoudre les problèmes de sécurité de manière proactive. Ensuite, ils géreront l'accès aux applications tierces et les appareils mobiles afin d'assurer la sécurité. Pour finir, les participants appliqueront les mesures de sécurité des e-mails et de conformité pour protéger les données organisationnelles.
Ce cours a été conçu pour présenter en détail les services principaux de Google Workspace. Les participants y apprendront à activer, désactiver et configurer les paramètres de ces services, dont Gmail, Agenda, Drive, Meet, Chat et Docs. Ensuite, ils découvriront comment déployer et gérer Gemini dans l'intérêt de leurs utilisateurs. Enfin, les participants examineront des cas d'utilisation d'AppSheet et d'Apps Script pour apprendre à automatiser des tâches et étendre les fonctionnalités des applications Google Workspace.
Ce cours a été conçu pour présenter la gestion des ressources et des utilisateurs dans Google Workspace. Les participants y apprendront à configurer des unités organisationnelles pour répondre aux besoins de leur organisation, et à gérer différents types de groupes Google. Ils développeront également une expertise dans la gestion des paramètres de domaine dans Google Workspace. Pour finir, ils apprendront à maîtriser l'optimisation et la structuration des ressources dans leur environnement Google Workspace.
Le cours commence par une discussion sur les données : vous découvrirez comment améliorer leur qualité et effectuer des analyses exploratoires. Ensuite, nous vous présenterons Vertex AI AutoML et vous expliquerons comment créer, entraîner et déployer un modèle de machine learning (ML) sans écrire une ligne de code. Vous découvrirez également les avantages de BigQuery ML. Enfin, nous verrons comment optimiser un modèle de ML, et en quoi la généralisation ainsi que l'échantillonnage peuvent vous aider à évaluer la qualité des modèles de ML destinés à un entraînement personnalisé.
Ce cours présente les solutions d'IA et de machine learning (ML) de Google Cloud permettant de développer des projets d'IA prédictive et générative. Il décrit les technologies, produits et outils disponibles tout au long du cycle de vie des données à l'IA, en englobant les éléments de base, le développement et les solutions d'IA. Son but est d'aider les data scientists, les développeurs d'IA et les ingénieurs en ML à améliorer leurs compétences et connaissances par le biais d'expériences d'apprentissage captivantes et d'exercices pratiques.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
This course is intended to give architects, engineers, and developers the skills required to help enterprise customers architect, plan, execute, and test database migration projects. Through a combination of presentations, demos, and hands-on labs participants move databases to Google Cloud while taking advantage of various services. This course covers how to move on-premises, enterprise databases like SQL Server to Google Cloud (Compute Engine and Cloud SQL) and Oracle to Google Cloud bare metal.
Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Ingénierie des données sur Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Créer des pipelines de données en batch sur Google Cloud".
Ce cours accéléré à la demande présente aux participants l'infrastructure complète et flexible de Google Cloud Platform ainsi que les services de plate-forme fournis, en s'intéressant plus particulièrement à Compute Engine. À travers un ensemble de vidéos de présentation, de démonstrations et d'ateliers pratiques, les participants découvrent et déploient des éléments de solution, y compris des composants d'infrastructure tels que les réseaux, les systèmes et les services applicatifs. Ce cours aborde également le déploiement de solutions pratiques, telles que les clés de chiffrement fournies par le client, la gestion de la sécurité et des accès, les quotas et la facturation, ainsi que la surveillance des ressources.
This quest of "Challenge Labs" gives the student preparing for the Google Cloud Certified Professional Cloud Architect certification hands-on practice with common business/technology solutions using Google Cloud architectures. Challenge Labs do not provide the "cookbook" steps, but require solutions to be built with minimal guidance, across many Google Cloud technologies. All labs have activity tracking, and in order to earn this badge you must score 100% in each lab. This quest is not easy and will put your Google Cloud technology skills to the test! Be aware that while practice with these labs will increase your knowledge and abilities, additional study, experience, and background in cloud architecture is recommended to prepare for this certification. Complete this quest to receive an exclusive Google Cloud digital badge.
Cette quête fondamentale est unique parmi les autres offres Qwiklabs. Les ateliers ont été conçus pour former les professionnels de l'informatique aux thèmes et aux services figurant dans la certification Google Cloud.