Mustafa Gulercan
Miembro desde 2019
Liga de Oro
37025 puntos
Miembro desde 2019
En este curso, analizaremos los componentes y las prácticas recomendadas de la creación de sistemas de AA de alto rendimiento en entornos de producción. Veremos algunas de las consideraciones más comunes tras la creación de estos sistemas, p. ej., entrenamiento estático, entrenamiento dinámico, inferencia estática, inferencia dinámica, TensorFlow distribuido y TPU. Este curso se enfoca en explorar las características que conforman un buen sistema de AA más allá de su capacidad de realizar predicciones correctas.
En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.
En este curso, se aplica un enfoque real en el flujo de trabajo del AA a través de un caso de éxito. Un equipo de AA trabaja con varios requisitos empresariales y casos de uso de AA. El equipo debe comprender las herramientas necesarias para la administración de los datos y considerar el mejor enfoque para su procesamiento previo. Al equipo se le presentan tres opciones con las que puede crear modelos de AA para dos casos de uso. En el curso, se explica por qué el equipo usará AutoML, BigQuery ML o entrenamiento personalizado para lograr sus objetivos.
Complete the introductory Create and Manage Bigtable Instances skill badge to demonstrate skills in the following: creating instances, designing schemas, querying data, and performing administrative tasks in Bigtable including monitoring performance and configuring node autoscaling and replication.
Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.
Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.
En este curso, se exploran los beneficios de utilizar Vertex AI Feature Store, cómo mejorar la exactitud de los modelos de AA y cómo descubrir cuáles columnas de datos producen los atributos más útiles. El curso también incluye contenido y labs sobre la ingeniería de atributos en los que se usan BigQuery ML, Keras y TensorFlow.
En este curso, se explica cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la exactitud de los modelos de AA y cómo escribir modelos de AA para uso escalado.
Planning for a Google Workspace Deployment es el último curso de la serie Google Workspace Administration. En este curso, conocerás la metodología de implementación y las prácticas recomendadas de Google. Seguirás a Katelyn y Marcus mientras planifican una implementación de Google Workspace en Cymbal. Se enfocarán en las áreas técnicas principales del proyecto: aprovisionamiento, flujo de correo electrónico, migración de datos y coexistencia, y considerarán la mejor estrategia de implementación para cada área. También conocerás la importancia de la administración de cambios en una implementación de Google Workspace, asegurándote de que los usuarios tengan una transición fluida a Google Workspace y accedan a los beneficios de la transformación laboral a través de comunicaciones, asistencia y capacitación. En este curso se abordan temas teóricos y no hay ejercicios prácticos. Si aún no lo hiciste, cancela tu prueba de Google Workspace para evitar cobros no deseados.
En este curso, los estudiantes aprenderán habilidades para administrar los datos en su entorno de Google Workspace. Explorarán las reglas de Prevención de pérdida de datos en Gmail y Drive para impedir la filtración de datos. También aprenderán a usar Google Vault para la retención, la preservación y la recuperación de datos. Luego, aprenderán a configurar regiones de datos y parámetros de configuración de exportación para cumplir con las normativas. Por último, los estudiantes descubrirán cómo clasificar datos con etiquetas para mejorar la organización y la seguridad.
En este curso, los estudiantes aprenderán a resguardar su entorno de Google Workspace. Implementarán políticas de contraseñas seguras y verificación en dos pasos para controlar el acceso de los usuarios. Luego, utilizarán la herramienta de investigación de seguridad para identificar los riesgos de seguridad y responder a ellos proactivamente. Después, administrarán el acceso a apps de terceros y a dispositivos móviles para garantizar la seguridad. Por último, los estudiantes aprenderán a aplicar medidas de seguridad y cumplimiento a los correos electrónicos para proteger los datos de la organización.
Este curso se diseñó para que los estudiantes comprendan de forma integral los servicios principales de Google Workspace. Los estudiantes explorarán cómo habilitar, inhabilitar y configurar los parámetros de estos servicios, incluidos Gmail, Calendario, Drive, Meet, Chat y Documentos. Luego, aprenderán a implementar y administrar Gemini para empoderar a sus usuarios. Por último, examinarán casos de uso de AppSheet y Apps Script para automatizar tareas y ampliar la funcionalidad de las aplicaciones de Google Workspace.
Este curso está diseñado para que se comprenda la administración de recursos y usuarios de Google Workspace. Los estudiantes explorarán la configuración de las unidades organizativas para ajustarla a las necesidades de su organización. Además, descubrirán cómo administrar varios tipos de Grupos de Google. También desarrollarán habilidades para administrar la configuración de dominios en Google Workspace. Por último, dominarán la optimización y estructuración de recursos en su entorno de Google Workspace.
El curso comienza con un debate sobre los datos: cómo mejorar su calidad y cómo realizar análisis exploratorios de ellos. Describimos Vertex AI AutoML y cómo crear, entrenar e implementar un modelo de AA sin escribir una sola línea de código. Conocerás los beneficios de BigQuery ML. Luego, se analiza cómo optimizar un modelo de aprendizaje automático (AA) y cómo la generalización y el muestreo pueden ayudar a evaluar la calidad de los modelos de AA para el entrenamiento personalizado.
En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
This course is intended to give architects, engineers, and developers the skills required to help enterprise customers architect, plan, execute, and test database migration projects. Through a combination of presentations, demos, and hands-on labs participants move databases to Google Cloud while taking advantage of various services. This course covers how to move on-premises, enterprise databases like SQL Server to Google Cloud (Compute Engine and Cloud SQL) and Oracle to Google Cloud bare metal.
Los dos componentes clave de cualquier canalización de datos son los data lakes y los almacenes de datos. En este curso, se destacan los casos de uso de cada tipo de almacenamiento y se analizan en profundidad las soluciones de data lakes y almacenes disponibles en Google Cloud con detalles técnicos. Además, en este curso, se describen el rol del ingeniero en datos, los beneficios de las canalizaciones de datos exitosas para las operaciones comerciales y por qué la ingeniería de datos debe realizarse en un entorno de nube. Este el primer curso de la serie Ingeniería de datos en Google Cloud. Después de completar este curso, inscríbete en el curso Creación de flujos de procesamiento de datos por lotes en Google Cloud.
En este curso acelerado a pedido, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud, con un enfoque en Compute Engine. Mediante una serie de clases por video, demostraciones y labs prácticos, los participantes pueden explorar y, también, implementar elementos de soluciones, incluidos componentes de infraestructura, como redes, sistemas y servicios de aplicaciones. En este curso, también se aborda la implementación de soluciones prácticas, incluidas las claves de encriptación proporcionadas por el cliente, la administración de seguridad y accesos, las cuotas y la facturación, y la supervisión de recursos.
This quest of "Challenge Labs" gives the student preparing for the Google Cloud Certified Professional Cloud Architect certification hands-on practice with common business/technology solutions using Google Cloud architectures. Challenge Labs do not provide the "cookbook" steps, but require solutions to be built with minimal guidance, across many Google Cloud technologies. All labs have activity tracking, and in order to earn this badge you must score 100% in each lab. This quest is not easy and will put your Google Cloud technology skills to the test! Be aware that while practice with these labs will increase your knowledge and abilities, additional study, experience, and background in cloud architecture is recommended to prepare for this certification. Complete this quest to receive an exclusive Google Cloud digital badge.
Esta Quest de nivel básico es única entre las demás ofertas de Qwiklabs. Los labs se seleccionaron para brindar a los profesionales de TI experiencia práctica en temas y servicios que aparecen en la certificación Associate Cloud Engineer de Google Cloud Certified. Desde IAM hasta herramientas de redes y la implementación de Kubernetes Engine, esta Quest se compone de labs específicos que pondrán a prueba sus conocimientos de GCP. Tenga en cuenta que, si bien realizar estos labs le permitirá aumentar sus habilidades y capacidades, le recomendamos que además consulte la guía del examen y otros recursos de preparación disponibles.