Приєднатися Увійти

Chinwong Tangchringchai

Учасник із 2023

Срібна ліга

Кількість балів: 2600
Generative AI Fundamentals - Українська Earned черв. 14, 2023 EDT
Introduction to Responsible AI - Українська Earned черв. 14, 2023 EDT
Introduction to Large Language Models - Українська Earned черв. 13, 2023 EDT
Introduction to Generative AI - Українська Earned черв. 12, 2023 EDT
Preparing for your Professional Data Engineer Journey Earned лют. 28, 2023 EST
Підготовка даних для інтерфейсів API машинного навчання в Google Cloud Earned лют. 23, 2023 EST
Engineer Data for Predictive Modeling with BigQuery ML Earned лют. 22, 2023 EST
Serverless Data Processing with Dataflow: Operations Earned лют. 22, 2023 EST
Serverless Data Processing with Dataflow: Develop Pipelines Earned лют. 20, 2023 EST
Serverless Data Processing with Dataflow: Foundations Earned лют. 13, 2023 EST
Smart Analytics, Machine Learning, and AI on Google Cloud Earned лют. 13, 2023 EST
Building Resilient Streaming Analytics Systems on Google Cloud Earned лют. 3, 2023 EST
Building Batch Data Pipelines on Google Cloud Earned лют. 1, 2023 EST
Налаштування розподілу навантаження в Compute Engine Earned січ. 25, 2023 EST
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned січ. 24, 2023 EST
Google Cloud Big Data and Machine Learning Fundamentals - українська Earned січ. 20, 2023 EST
[DEPRECATED] Data Engineering Earned січ. 16, 2023 EST

Щоб отримати кваліфікаційний значок, пройдіть курси "Introduction to Generative AI", "Introduction to Large Language Models" й "Introduction to Responsible AI". Пройшовши завершальний тест, ви підтвердите, що засвоїли основні поняття, які стосуються генеративного штучного інтелекту. Кваліфікаційний значок – це цифровий значок від платформи Google Cloud, який свідчить, що ви знаєтеся на продуктах і сервісах Google Cloud. Щоб опублікувати кваліфікаційний значок, зробіть свій профіль загальнодоступним, а також додайте значок у профіль у соціальних мережах.

Докладніше

Це ознайомлювальний курс мікронавчання, який має пояснити, що таке відповідальне використання штучного інтелекту, чому воно важливе і як компанія Google реалізує його у своїх продуктах. Крім того, у цьому курсі викладено 7 принципів Google щодо штучного інтелекту.

Докладніше

У цьому ознайомлювальному курсі мікронавчання ви дізнаєтеся, що таке великі мовні моделі, де вони використовуються і як підвищити їх ефективність коригуванням запитів. Він також охоплює інструменти Google, які допоможуть вам створювати власні додатки на основі генеративного штучного інтелекту.

Докладніше

Це ознайомлювальний курс мікронавчання, який має пояснити, що таке генеративний штучний інтелект, як він використовується й чим відрізняється від традиційних методів машинного навчання. Він також охоплює інструменти Google, які допоможуть вам створювати власні додатки на основі генеративного штучногоінтелекту.

Докладніше

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Докладніше

Пройдіть вступний кваліфікаційний курс Підготовка даних для інтерфейсів API машинного навчання в Google Cloud, щоб продемонструвати свої навички щодо очистки даних за допомогою сервісу Dataprep by Trifacta, запуску конвеєрів даних у Dataflow, створення кластерів і запуску завдань Apache Spark у Dataproc, а також виклику API машинного навчання, зокрема Cloud Natural Language API, Google Cloud Speech-to-Text API і Video Intelligence API. Кваліфікаційний значок – це ексклюзивна цифрова відзнака, яка підтверджує, що ви вмієте працювати з продуктами й сервісами Google Cloud і можете застосовувати ці знання в інтерактивному практичному середовищі. Щоб отримати кваліфікаційний значок і показати його колегам, пройдіть цей курс і підсумковий тест.

Докладніше

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Докладніше

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

Докладніше

In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.

Докладніше

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Докладніше

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Докладніше

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

Докладніше

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Докладніше

Пройдіть вступний кваліфікаційний курс Налаштування розподілу навантаження в Compute Engine, щоб продемонструвати свої навички написання команд gcloud і використання Cloud Shell, створення й розгортання віртуальних машин у Compute Engine, а також налаштування мережі й розподілювачів навантаження HTTP. Кваліфікаційний значок – це ексклюзивний цифровий значок від Google Cloud, який засвідчує, що ви знаєтеся на продуктах і сервісах цієї платформи й можете застосовувати ці знання в інтерактивному практичному середовищі. Щоб отримати кваліфікаційний значок і показати його колегам, пройдіть цей курс і підсумковий тест.

Докладніше

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Докладніше

Під час курсу ви зможете ознайомитися з продуктами й сервісами Google Cloud для роботи з масивами даних і машинним навчанням, які підтримують життєвий цикл роботи з даними для тренування моделей штучного інтелекту. У курсі розглядаються процеси, проблеми й переваги створення конвеєру масиву даних і моделей машинного навчання з Vertex AI у Google Cloud.

Докладніше

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

Докладніше