Generate engaging media with Google's foundation models for media. Create new images with Imagen, or edit your existing photos by adding details or outpainting to create a wider view. Replace backgrounds to put your products in new scenes. And learn the basics of generating videos with Veo!
Complete the Develop solutions using Model Garden APIs skill badge to demonstrate your ability to use Vertex AI Model Garden features when building gen AI solutions. You will use partner APIs such as Anthropic Claude ands Meta Llama, deploy and programatically access foundation models like Gemma and Stable Diffusion XL and access Vertex AI Endpoints. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Model tuning is an effective way to customize large models to your tasks. It's a key step to improve the model's quality and efficiency. Model tuning provides benefits such as higher quality results for your specific tasks and increased model robustness. You learn some of the tuning options available in Vertex AI and when to use them.
Model Garden is a model library that helps you discover, test, and deploy models from Google and Google partners. Learn how to explore the available models and select the right ones for your use case. And how to deploy and interact with Model Garden models through the Google Cloud console and APIs.
Complete the Extend Gemini with controlled generation and Tool use skill badge to demonstrate your proficiency in connecting models to external tools and APIs. This allows models to augment their knowledge, extend their capabilities and interact with external systems to take actions such as sending an email. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!"
An LLM-based application can process language in a way that resembles thought. But if you want to extend its capabilities to take actions by running other functions you have coded, you will need to use function calling. This can also be referred to as tool use. Additionally, you can give a model the ability to search Google or search a data store of documents to ground its responses. In other words, to base its answers on that information. In this course, you’ll explore these concepts.
Learn a variety of strategies and techniques to engineer effective prompts for generative models
Learn how to leverage Gemini multimodal capabilities to process and generate text, images, and audio and to integrate Gemini through APIs to perform tasks such as content creation and summarization.
This lab tests your ability to develop a real-world Generative AI Q&A solution using a RAG framework. You will use Firestore as a vector database and deploy a Flask app as a user interface to query a food safety knowledge base.
Learn how to create Hybrid Search applications using Vertex AI Vertex Search to combine semantic searching with keyword search to return results based on both semantic meaning and keyword matching.
Learn how to build your own Retrieval-Augmented Generation (RAG) solutions for greater control and flexibility than out-of-the-box implementations. Create a custom RAG solution using Vertex AI APIs, vector stores, and the LangChain framework.
In diesem Kurs wird eine Lösung für Retrieval-Augmented Generation (RAG) in BigQuery vorgestellt, die KI-Halluzinationen minimiert. Sie lernen einen RAG-Workflow kennen, der die Erstellung von Einbettungen, die Suche in einem Vektorraum und die Generierung verbesserter Antworten umfasst. Darüber hinaus werden die konzeptionellen Gründe für diese Schritte und ihre praktische Umsetzung mit BigQuery erklärt. Am Ende des Kurses werden Sie in der Lage sein, eine RAG-Pipeline mithilfe von BigQuery und generativen KI-Modellen wie Gemini zu erstellen und Modelle einzubetten, um KI-Halluzinationen zu verhindern.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.
Gen AI Agents: Transform Your Organization is the fifth and final course of the Gen AI Leader learning path. This course explores how organizations can use custom gen AI agents to help tackle specific business challenges. You gain hands-on practice building a basic gen AI agent, while exploring the components of these agents, such as models, reasoning loops, and tools.
Transform Your Work With Gen AI Apps is the fourth course of the Gen AI Leader learning path. This course introduces Google’s gen AI applications, such as Google Workspace with Gemini and NotebookLM. It guides you through concepts like grounding, retrieval augmented generation, constructing effective prompts and building automated workflows.
Gen AI: Navigate the Landscape is the third course of the Gen AI Leader learning path. Gen AI is changing how we work and interact with the world around us. But as a leader, how can you harness its power to drive real business outcomes? In this course, you explore the different layers of building gen AI solutions, Google Cloud’s offerings, and the factors to consider when selecting a solution.
Gen AI: Unlock Foundational Concepts is the second course of the Gen AI Leader learning path. In this course, you unlock the foundational concepts of generative AI by exploring the differences between AI, ML, and gen AI, and understanding how various data types enable generative AI to address business challenges. You also gain insights into Google Cloud strategies to address the limitations of foundation models and the key challenges for responsible and secure AI development and deployment.
Gen AI: Beyond the Chatbot is the first course of the Gen AI Leader learning path and has no prerequisites. This course aims to move beyond the basic understanding of chatbots to explore the true potential of generative AI for your organization. You explore concepts like foundation models and prompt engineering, which are crucial for leveraging the power of gen AI. The course also guides you through important considerations you should make when developing a successful gen AI strategy for your organization.
The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.
In diesem Kurs werden Diffusion-Modelle vorgestellt, eine Gruppe verschiedener Machine Learning-Modelle, die kürzlich einige vielversprechende Fortschritte im Bereich Bildgenerierung gemacht haben. Diffusion-Modelle basieren auf physikalischen Konzepten der Thermodynamik und sind in den letzten Jahren in der Forschung und Industrie sehr beliebt geworden. Dabei stützen sich Diffusion-Modelle auf viele innovative Modelle und Tools zur Bildgenerierung in Google Cloud. In diesem Kurs werden Ihnen die theoretischen Grundlagen der Diffusion-Modelle erläutert und wie Sie diese Modelle über Vertex AI trainieren und bereitstellen können.
Dieser Kurs bietet eine Einführung in Vertex AI Studio, ein Tool für die Interaktion mit generativen KI-Modellen sowie das Prototyping von Geschäftsideen und ihre Umsetzung. Anhand eines eindrucksvollen Anwendungsfalls, ansprechender Lektionen und einer praktischen Übung lernen Sie den Lebenszyklus vom Prompt bis zum Produkt kennen und erfahren, wie Sie Vertex AI Studio für multimodale Gemini-Anwendungen, Prompt-Design, Prompt Engineering und Modellabstimmung einsetzen können. Ziel ist es, Ihnen aufzuzeigen, wie Sie das Potenzial von generativer KI in Ihren Projekten mit Vertex AI Studio ausschöpfen.
In diesem Kurs wird der Aufmerksamkeitsmechanismus vorgestellt. Dies ist ein leistungsstarkes Verfahren, das die Fokussierung neuronaler Netzwerke auf bestimmte Abschnitte einer Eingabesequenz ermöglicht. Sie erfahren, wie der Aufmerksamkeitsmechanismus funktioniert und wie Sie damit die Leistung verschiedener Machine Learning-Tasks wie maschinelle Übersetzungen, Zusammenfassungen von Texten und Question Answering verbessern können.
Dieser Kurs vermittelt Ihnen eine Zusammenfassung der Encoder-Decoder-Architektur, einer leistungsstarken und gängigen Architektur, die bei Sequenz-zu-Sequenz-Tasks wie maschinellen Übersetzungen, Textzusammenfassungen und dem Question Answering eingesetzt wird. Sie lernen die Hauptkomponenten der Encoder-Decoder-Architektur kennen und erfahren, wie Sie diese Modelle trainieren und bereitstellen können. Im dazugehörigen Lab mit Schritt-für-Schritt-Anleitung können Sie in TensorFlow von Grund auf einen Code für eine einfache Implementierung einer Encoder-Decoder-Architektur erstellen, die zum Schreiben von Gedichten dient.
Mit dem Skill-Logo Prompt-Design mit Vertex AI weisen Sie Grundkenntnisse in folgenden Bereichen nach: Prompt Engineering, Bildanalyse und multimodale generative Techniken in Vertex AI. Entdecken Sie, wie Sie wirksame Prompts erstellen, auf generativer KI basierende Ausgaben steuern und Gemini-Modelle in Marketing-Szenarien aus der Praxis anwenden. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Learn about the new skills you'll need to be successful when using generative AI. Google Cloud has used generative AI to help keep you engaged and streamline your learning journey.
In diesem Kurs lernen Sie KI-basierte Suchtechnologien, Tools und Anwendungen kennen. Er umfasst folgende Themen: die semantische Suche mithilfe von Vektoreinbettungen, die Hybridsuche, bei der semantische und stichwortbezogene Ansätze kombiniert werden, und Retrieval-Augmented Generation (RAG), die KI-Halluzinationen durch einen fundierten KI-Agenten minimiert. Sie sammeln praktische Erfahrungen mit der Vektorsuche in Vertex AI zum Entwickeln einer intelligenten Suchmaschine.
This course discusses the key elements of Google's Data Warehouse solution portfolio and strategy.
Google Cloud : Prompt Engineering Guide examines generative AI tools, how they work. We'll explore how to combine Google Cloud knowledge with prompt engineering to improve Gemini responses.
This course covers BigQuery fundamentals for professionals who are familiar with SQL-based cloud data warehouses in Teradata and want to begin working in BigQuery. Through interactive lecture content and hands-on labs, you learn how to provision resources, create and share data assets, ingest data, and optimize query performance in BigQuery. Drawing upon your knowledge of Teradata, you also learn about similarities and differences between Teradata and BigQuery to help you get started with data warehouses in BigQuery. After this course, you can continue your BigQuery journey by completing the skill badge quest titled Build and Optimize Data Warehouses with BigQuery.
Da die Nutzung von künstlicher Intelligenz und Machine Learning in Unternehmen weiter zunimmt, wird auch deren verantwortungsbewusste Entwicklung ein immer wichtigeres Thema. Dabei ist es für viele schwierig, die Überlegungen zur verantwortungsbewussten Anwendung von KI in die Praxis umzusetzen. Wenn Sie wissen möchten, wie sich die verantwortungsbewusste Anwendung von KI in die Praxis umsetzen, also operationalisieren lässt, finden Sie in diesem Kurs entsprechende Hilfestellungen. In diesem Kurs erfahren Sie, wie dies mit Google Cloud heutzutage möglich ist, inklusive entsprechender Best Practices und Erkenntnisse. Es wird gezeigt, welches Framework Google Cloud bietet, um einen eigenen Ansatz für die verantwortungsbewusste Anwendung von KI zu entwickeln.
Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.