加入 登录

Suraj Shahapure

成为会员时间:2023

黄金联赛

5985 积分
建立圖像說明生成模型 Earned Sep 11, 2025 EDT
Transformer 和 BERT 模型 Earned Sep 11, 2025 EDT
編碼器-解碼器架構 Earned Sep 11, 2025 EDT
注意力機制 Earned Sep 11, 2025 EDT
圖像生成簡介 Earned Oct 9, 2023 EDT
Generative AI for Business Leaders Earned Oct 6, 2023 EDT
負責任的 AI 技術:透過 Google Cloud 採用 AI 開發原則 Earned Oct 6, 2023 EDT
Generative AI Fundamentals Earned Aug 13, 2023 EDT
負責任的 AI 技術簡介 Earned Aug 13, 2023 EDT
大型語言模型簡介 Earned Aug 13, 2023 EDT
生成式 AI 簡介 Earned Aug 13, 2023 EDT
在 Google Cloud 實作 Cloud 安全防護措施:基礎知識 Earned May 8, 2023 EDT
建立 Google Cloud 網路 Earned May 7, 2023 EDT
透過 Google Cloud Observability 監控及記錄系統狀態 Earned May 6, 2023 EDT
在 Google Cloud 使用 Terraform 建構基礎架構 Earned Apr 27, 2023 EDT
在 Google Cloud 設定應用程式開發環境 Earned Apr 26, 2023 EDT
在 Compute Engine 實作負載平衡功能 Earned Apr 25, 2023 EDT

本課程說明如何使用深度學習來建立圖像說明生成模型。您將學習圖像說明生成模型的各個不同組成部分,例如編碼器和解碼器,以及如何訓練和評估模型。在本課程結束時,您將能建立自己的圖像說明生成模型,並使用模型產生圖像說明文字。

了解详情

這堂課程將說明變換器架構,以及基於變換器的雙向編碼器表示技術 (BERT) 模型,同時帶您瞭解變換器架構的主要組成 (如自我注意力機制) 和如何用架構建立 BERT 模型。此外,也會介紹 BERT 適用的各種任務,像是文字分類、問題回答和自然語言推論。課程預計約 45 分鐘。

了解详情

本課程概要說明解碼器與編碼器的架構,這種強大且常見的機器學習架構適用於序列對序列的任務,例如機器翻譯、文字摘要和回答問題。您將認識編碼器與解碼器架構的主要元件,並瞭解如何訓練及提供這些模型。在對應的研究室逐步操作說明中,您將學習如何從頭開始使用 TensorFlow 寫程式,導入簡單的編碼器與解碼器架構來產生詩詞。

了解详情

本課程將介紹注意力機制,說明這項強大技術如何讓類神經網路專注於輸入序列的特定部分。此外,也將解釋注意力的運作方式,以及如何使用注意力來提高各種機器學習任務的成效,包括機器翻譯、文字摘要和回答問題。

了解详情

本課程將介紹擴散模型,這是一種機器學習模型,近期在圖像生成領域展現亮眼潛力。概念源自物理學,尤其深受熱力學影響。過去幾年來,在學術界和業界都是炙手可熱的焦點。在 Google Cloud 中,擴散模型是許多先進圖像生成模型和工具的基礎。課程將介紹擴散模型背後的理論,並說明如何在 Vertex AI 上訓練和部署這些模型。

了解详情

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

了解详情

隨著企業持續擴大使用人工智慧和機器學習,以負責任的方式發展相關技術也日益重要。對許多企業來說,談論負責任的 AI 技術可能不難,如何付諸實行才是真正的挑戰。如要瞭解如何在機構中導入負責任的 AI 技術,本課程絕對能助您一臂之力。 您可以從中瞭解 Google Cloud 目前採取的策略、最佳做法和經驗談,協助貴機構奠定良好基礎,實踐負責任的 AI 技術。

了解详情

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

了解详情

這個入門微學習課程主要介紹「負責任的 AI 技術」和其重要性,以及 Google 如何在自家產品中導入這項技術。本課程也會說明 Google 的 7 個 AI 開發原則。

了解详情

這是一堂入門級的微學習課程,旨在探討大型語言模型 (LLM) 的定義和用途,並說明如何調整提示來提高 LLM 成效。此外,也會介紹多項 Google 工具,協助您自行開發生成式 AI 應用程式。

了解详情

這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。

了解详情

完成 在 Google Cloud 實作 Cloud 安全防護措施:基礎知識 技能徽章中階課程, 即可證明您具備下列技能:運用 Identity and Access Management (IAM) 建立及指派角色、 建立及管理服務帳戶、啟用虛擬私有雲 (VPC) 網路中的私人連線、 運用 Identity-Aware Proxy 限制應用程式存取權、 運用 Cloud Key Management Service (KMS) 管理金鑰和已加密資料,以及建立私人 Kubernetes 叢集。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰研究室,即可取得技能徽章 並與親友分享。

了解详情

完成 建立 Google Cloud 網路 課程即可獲得技能徽章。這個課程將說明 部署及監控應用程式的多種方法,包括查看 IAM 角色及新增/移除 專案存取權、建立虛擬私有雲網路、部署及監控 Compute Engine VM、編寫 SQL 查詢、在 Compute Engine 部署及監控 VM,以及 使用 Kubernetes 透過多種方法部署應用程式。

了解详情

完成 透過 Google Cloud Observability 監控及記錄系統狀態 技能徽章入門課程, 即可證明您具備下列技能:監控 Compute Engine 中的虛擬機器、 運用 Cloud Monitoring 監管多項專案、在 Cloud Functions 延伸應用監控和記錄功能、 建立和傳送自訂應用程式指標,以及根據自訂指標設定 Cloud Monitoring 快訊。

了解详情

完成「在 Google Cloud 使用 Terraform 建構基礎架構」技能徽章中階課程, 即可證明自己具備下列知識與技能:使用 Terraform 的基礎架構即程式碼 (IaC) 原則、運用 Terraform 設定佈建及管理 Google Cloud 資源、有效管理狀態 (本機和遠端),以及將 Terraform 程式碼模組化,以利重複使用和管理。

了解详情

只要修完「在 Google Cloud 設定應用程式開發環境」課程,就能獲得技能徽章。 在本課程中,您將學會如何使用以下技術的基本功能,建構和連結以儲存空間為中心的雲端基礎架構:Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。

了解详情

完成 在 Compute Engine 實作負載平衡功能 技能徽章入門課程,即可證明您具備下列技能: 編寫 gcloud 指令和使用 Cloud Shell、在 Compute Engine 建立及部署虛擬機器, 以及設定網路和 HTTP 負載平衡器。 「技能徽章」是 Google Cloud 核發的 獨家數位徽章,用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成這個課程及挑戰研究室 最終評量,即可取得技能徽章並與親友分享。

了解详情