加入 登录

Deepak Mahto

成为会员时间:2023

黄金联赛

5900 积分
使用多模态 Gemini 和多模态 RAG 检查富文档 Earned Jun 24, 2024 EDT
使用 Gemini 和 Streamlit 开发生成式 AI 应用 Earned Jun 21, 2024 EDT
使用 Vertex AI 中的 Gemini API 探索生成式 AI Earned Jun 20, 2024 EDT
Generative AI Fundamentals Earned Aug 1, 2023 EDT
Generative AI Explorer : Vertex AI Earned Jul 20, 2023 EDT
Transformer 模型和 BERT 模型 Earned Jul 20, 2023 EDT
编码器-解码器架构 Earned Jul 17, 2023 EDT
注意力机制 Earned Jul 14, 2023 EDT
图像生成简介 Earned Jul 13, 2023 EDT
Responsible AI: 和 Google Cloud 一起践行 AI 原则 Earned Jul 12, 2023 EDT
Generative AI Fundamentals - 简体中文 Earned Jun 26, 2023 EDT
负责任的 AI 简介 Earned Jun 26, 2023 EDT
大型语言模型简介 Earned Jun 21, 2023 EDT
生成式 AI 简介 Earned Jun 21, 2023 EDT

完成中级技能徽章课程使用多模态 Gemini 和多模态 RAG 检查富文档,展示您在以下方面的技能: 将多模态与 Gemini 配合使用,从而使用多模态提示从文本数据和视觉数据中提取信息、生成视频说明、 检索视频中不包含的额外信息; 将多模态检索增强生成 (RAG) 与 Gemini 配合使用,以构建包含文本和图片的文档的元数据、获取所有相关文本块并输出引用。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度; 您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能 徽章课程和作为最终评估的实验室挑战赛, 获得技能徽章, 在您的人际圈中炫出自己的技能。

了解详情

完成中级技能徽章课程“使用 Gemini 和 Streamlit 开发生成式 AI 应用”,展示您在以下方面的技能: 文本生成、通过 Python SDK 和 Gemini API 应用函数调用,以及通过 Cloud Run 部署 Streamlit 应用。 您将了解如何以不同方式通过提示来让 Gemini 生成文本、使用 Cloud Shell 进行测试,以及如何迭代 Streamlit 应用,随后将其封装成 Docker 容器并部署在 Cloud Run 中。

了解详情

完成中级技能徽章课程使用 Vertex AI 中的 Gemini API 探索生成式 AI,展示自己在以下方面的技能: 文本生成技能、用于增强内容创作能力的图像和视频分析技能,以及在 Gemini API 中应用函数调用技术的技能。 了解如何运用先进的 Gemini 技术、探索多模态内容生成方法,并扩展 AI 赋能项目的功能。

了解详情

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

了解详情

This content is deprecated. Please see the latest version of the course, here.

了解详情

本课程向您介绍 Transformer 架构和 Bidirectional Encoder Representations from Transformers (BERT) 模型。您将了解 Transformer 架构的主要组成部分,例如自注意力机制,以及该架构如何用于构建 BERT 模型。您还将了解可以使用 BERT 的不同任务,例如文本分类、问答和自然语言推理。完成本课程估计需要大约 45 分钟。

了解详情

本课程简要介绍了编码器-解码器架构,这是一种功能强大且常见的机器学习架构,适用于机器翻译、文本摘要和问答等 sequence-to-sequence 任务。您将了解编码器-解码器架构的主要组成部分,以及如何训练和部署这些模型。在相应的实验演示中,您将在 TensorFlow 中从头编写简单的编码器-解码器架构实现代码,以用于诗歌生成。

了解详情

本课程将向您介绍注意力机制,这是一种强大的技术,可令神经网络专注于输入序列的特定部分。您将了解注意力的工作原理,以及如何使用它来提高各种机器学习任务的性能,包括机器翻译、文本摘要和问题解答。

了解详情

本课程向您介绍扩散模型。这类机器学习模型最近在图像生成领域展现出了巨大潜力。扩散模型的灵感来源于物理学,特别是热力学。过去几年内,扩散模型成为热门研究主题并在整个行业开始流行。Google Cloud 上许多先进的图像生成模型和工具都是以扩散模型为基础构建的。本课程向您介绍扩散模型背后的理论,以及如何在 Vertex AI 上训练和部署此类模型。

了解详情

随着企业对人工智能和机器学习的应用越来越广泛,以负责任的方式构建这些技术也变得更加重要。但对很多企业而言,真正践行 Responsible AI 并非易事。如果您有意了解如何在组织内践行 Responsible AI,本课程正适合您。 本课程将介绍 Google Cloud 目前如何践行 Responsible AI,以及从中总结的最佳实践和经验教训,便于您以此为框架构建自己的 Responsible AI 方法。

了解详情

完成 Introduction to Generative AI、Introduction to Large Language Models 和 Introduction to Responsible AI 三门课程,赢取技能徽章。通过最终测验,即表明您理解了生成式 AI 的基本概念。 技能徽章是由 Google Cloud 颁发的数字徽章,旨在认可您对 Google Cloud 产品与服务的了解程度。公开您的个人资料并将技能徽章添加到您的社交媒体个人资料中,以此来分享您获得的成就。

了解详情

这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。

了解详情

这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。

了解详情

这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。

了解详情