加入 登录

Vinicius Ivankovich

成为会员时间:2024

黄金联赛

28635 积分
Text Prompt Engineering Techniques Earned Dec 4, 2024 EST
Preparing for your Professional Data Engineer Journey Earned Dec 3, 2024 EST
Machine Learning Operations (MLOps): Getting Started Earned Oct 30, 2024 EDT
透過 Vertex AI 建構及部署機器學習解決方案 Earned Oct 30, 2024 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Oct 10, 2024 EDT
Natural Language Processing on Google Cloud Earned Sep 30, 2024 EDT
Production Machine Learning Systems Earned Sep 2, 2024 EDT
負責任的 AI 技術:透過 Google Cloud 採用 AI 開發原則 Earned Aug 20, 2024 EDT
SOAR Fundamentals Earned Aug 15, 2024 EDT
Feature Engineering Earned Jul 30, 2024 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Jul 30, 2024 EDT
Unlocking the Power of Google Cloud Generative AI for Partners Earned Jul 16, 2024 EDT
Google Cloud Generative AI Trailblazer Earned Jul 16, 2024 EDT
Launching into Machine Learning Earned Jul 16, 2024 EDT
Introduction to CES and Conversational Agents Earned Jul 5, 2024 EDT
Google Cloud 的 AI 和機器學習服務簡介 Earned Jun 28, 2024 EDT

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

了解详情

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

了解详情

完成 透過 Vertex AI 建構及部署機器學習解決方案 課程,即可瞭解如何使用 Google Cloud 的 Vertex AI 平台、AutoML 和自訂訓練服務, 訓練、評估、調整、解釋及部署機器學習模型。 這個技能徽章課程適合專業數據資料學家和機器學習 工程師,完成即可取得中階技能徽章。技能 徽章是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境應用相關知識。完成這個技能徽章課程 和結業評量挑戰實驗室,就能獲得數位徽章, 並與親友分享。

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

了解详情

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

了解详情

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

了解详情

隨著企業持續擴大使用人工智慧和機器學習,以負責任的方式發展相關技術也日益重要。對許多企業來說,談論負責任的 AI 技術可能不難,如何付諸實行才是真正的挑戰。如要瞭解如何在機構中導入負責任的 AI 技術,本課程絕對能助您一臂之力。 您可以從中瞭解 Google Cloud 目前採取的策略、最佳做法和經驗談,協助貴機構奠定良好基礎,實踐負責任的 AI 技術。

了解详情

This course will familiarize you with the core functionality of Chronicle, including the user interface, connections, and settings.

了解详情

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

了解详情

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

了解详情

This course is for Partner sellers and technical pre-sales engineers to gain a comprehensive understanding of Google Cloud's cutting-edge Generative AI capabilities and learn to identify high-impact use cases.

了解详情

This course is for Google Cloud’s top partner sellers and technical pre-sales engineers to gain a comprehensive understanding of Google Cloud's cutting-edge Generative AI capabilities and learn to identify high-impact use cases. Those who complete the training and assessment will receive the Google Cloud Generative AI Trailblazer badge through Skills Boost.

了解详情

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

了解详情

This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.

了解详情

本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。

了解详情