Completa la insignia de habilidad intermedia del curso Implementa los aspectos básicos de seguridad en la nube en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: crear y asignar roles con Identity and Access Management (IAM); crear y administrar cuentas de servicio; habilitar la conectividad privada en las redes de nube privada virtual (VPC); restringir el acceso a las aplicaciones con Identity-Aware Proxy; administrar claves y datos encriptados con Cloud Key Management Service (KMS) y crear un clúster privado de Kubernetes.
En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.
Si eres un desarrollador principiante de soluciones en la nube que busca adquirir experiencia práctica más allá de lo aprendido en Conceptos básicos de Google Cloud, este curso es para ti. Obtendrás experiencia práctica a través de labs que profundizan en Cloud Storage y otros servicios de aplicaciones clave, como Monitoring y Cloud Functions. Desarrollarás habilidades valiosas que se pueden aplicar a cualquier iniciativa de Google Cloud.
Obtén la insignia de habilidad introductoria Preparar datos para paneles de Looker e informes y demuestra tus habilidades para realizar las siguientes tareas: filtrar, ordenar y reorientar datos, combinar resultados de diferentes exploraciones de Looker y usar funciones y operadores para crear informes y paneles de Looker para el análisis y la visualización de datos.
Completa la insignia de habilidad introductoria del curso Obtén estadísticas a partir de datos de BigQuery y demuestra tus habilidades para realizar las siguientes actividades: escribir consultas en SQL, consultar tablas públicas, cargar datos de muestra en BigQuery, solucionar problemas de errores de sintaxis habituales con el validador de consultas en BigQuery y crear informes en Looker Studio con la conexión a datos de BigQuery.
En este curso, aprenderás sobre la ingeniería de datos en Google Cloud, los roles y las responsabilidades de los ingenieros de datos y cómo estos se corresponden con las ofertas de Google Cloud. También aprenderás sobre los métodos para enfrentar los desafíos de la ingeniería de datos.
Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.
Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.
Completa la insignia de habilidad introductoria Prepara datos para las APIs de AA en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: limpiar datos con Dataprep de Trifacta, ejecutar canalizaciones de datos en Dataflow, crear clústeres y ejecutar trabajos de Apache Spark en Dataproc y llamar a APIs de AA, como la API de Cloud Natural Language, la API de Google Cloud Speech-to-Text y la API de Video Intelligence.
Completa la insignia de habilidad introductoria Implementa el balanceo de cargas en Compute Engine y demuestra tus habilidades para realizar las siguientes actividades: escribir comandos de gcloud y usar Cloud Shell, crear e implementar máquinas virtuales en Compute Engine, y configurar balanceadores de cargas de red y HTTP. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa esta insignia de habilidad y el Lab de desafío de la evaluación final para recibir una insignia que puedes compartir con tus contactos.
Las canalizaciones de datos suelen realizarse según uno de los paradigmas extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, grafos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.
La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.
El procesamiento de datos de transmisión es cada vez más popular, puesto que permite a las empresas obtener métricas en tiempo real sobre las operaciones comerciales. Este curso aborda cómo crear canalizaciones de datos de transmisión en Google Cloud. Pub/Sub se describe para manejar los datos de transmisión entrantes. El curso también aborda cómo aplicar agregaciones y transformaciones a los datos de transmisión con Dataflow y cómo almacenar los registros procesados en BigQuery o Bigtable para analizarlos. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos de transmisión en Google Cloud con QwikLabs.
Los dos componentes clave de cualquier canalización de datos son los data lakes y los almacenes de datos. En este curso, se destacan los casos de uso de cada tipo de almacenamiento y se analizan en profundidad las soluciones de data lakes y almacenes disponibles en Google Cloud con detalles técnicos. Además, en este curso, se describen el rol del ingeniero en datos, los beneficios de las canalizaciones de datos exitosas para las operaciones comerciales y por qué la ingeniería de datos debe realizarse en un entorno de nube. Este el primer curso de la serie Ingeniería de datos en Google Cloud. Después de completar este curso, inscríbete en el curso Creación de flujos de procesamiento de datos por lotes en Google Cloud.
En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.