Fadhli Fatahillah
Miembro desde 2022
Liga de Bronce
23334 puntos
Miembro desde 2022
Completa la insignia de habilidad intermedia del curso Optimiza los costos de Google Kubernetes Engine y demuestra tus habilidades para realizar las siguientes actividades: crear y administrar clústeres multiusuario, supervisar el uso de recursos por espacio de nombres, configurar el ajuste de escala automático de clústeres y Pods para mejorar la eficiencia, configurar el balanceo de cargas para optimizar la distribución de recursos y, además, implementar sondeos de funcionamiento y preparación para garantizar el estado y la rentabilidad de la aplicación. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa este curso y el lab de desafío de la evaluación final para recibir una insignia de habilidad que puedes compartir con tu red.
En este curso, descubrirás cómo Gemini, un colaborador potenciado por IA generativa de Google Cloud, te ayudará a usar los productos y servicios de Google para desarrollar, probar, implementar y administrar aplicaciones. Con la ayuda de Gemini, aprenderás a desarrollar y compilar una aplicación web, corregir errores de la aplicación, desarrollar pruebas y consultar datos. A través de un lab práctico, comprobarás cómo Gemini mejora el ciclo de vida del desarrollo de software (SDLC). Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
Learn how to create Hybrid Search applications using Vertex AI Vertex Search to combine semantic searching with keyword search to return results based on both semantic meaning and keyword matching.
Learn how to build your own Retrieval-Augmented Generation (RAG) solutions for greater control and flexibility than out-of-the-box implementations. Create a custom RAG solution using Vertex AI APIs, vector stores, and the LangChain framework.
Model Garden is a model library that helps you discover, test, and deploy models from Google and Google partners. Learn how to explore the available models and select the right ones for your use case. And how to deploy and interact with Model Garden models through the Google Cloud console and APIs.
En este curso, se explora una solución de generación mejorada por recuperación (RAG) de BigQuery para mitigar las alucinaciones de la IA. Se presenta un flujo de trabajo de RAG que abarca la creación de embeddings, la búsqueda en un espacio vectorial y la generación de respuestas mejoradas. En el curso, se explican los motivos conceptuales de estos pasos y su implementación práctica con BigQuery. Al final del curso, los alumnos podrán crear una canalización de RAG utilizando BigQuery y modelos de IA generativa como Gemini y modelos de embedding para abordar sus propios casos de uso de alucinaciones de IA.
Explore Playbooks and their implementation of the ReAct pattern for building Conversational Agents. You will learn how to construct a Playbook, set up goals and instructions to build a chatbot in natural language, and learn to test and deploy your solution.
Completa la insignia de habilidad intermedia Crea una infraestructura con Terraform en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: aplicar los principios de la infraestructura como código (IaC) con Terraform; aprovisionar y administrar recursos de Google Cloud con parámetros de configuración de Terraform; realizar una administración de estado eficaz (local y remota) y modularizar el código de Terraform para la reutilización y la organización.
En esta misión, aprenderá sobre los cuatro tipos de arquitecturas de sitios web disponibles en Google Cloud para garantizar que su sitio web esté disponible y sea escalable. Complete esta misión, incluido el laboratorio de desafíos al final, para recibir una insignia digital exclusiva de Google Cloud. El laboratorio de desafíos no proporciona pasos prescriptivos, sino que requiere la creación de soluciones con una orientación mínima y pondrá a prueba sus habilidades tecnológicas de Google Cloud. Esta misión se basa en la serie de videos Get Cooking in Cloud.
In this skill badge, you will demonstrate your ability to deploy Google Agentspace and set up data stores and actions. To learn these skills, we encourage you to take the course Accelerate Knowledge Exchange with Agentspace.
En este curso, se presentan los conceptos de la IA responsable y los principios de la IA. Se abordan técnicas para identificar de forma práctica la equidad y los sesgos, y mitigar los sesgos en las prácticas de IA/AA. Se exploran métodos y herramientas funcionales para implementar prácticas recomendadas de la IA responsable con productos de Google Cloud y herramientas de código abierto.
En este curso, aprenderás cómo Gemini, un colaborador potenciado por IA generativa de Google Cloud, ayuda a los desarrolladores a compilar aplicaciones. Aprenderás a darle instrucciones a Gemini para que explique códigos, recomiende servicios de Google Cloud y genere código para tus aplicaciones. A través de un lab práctico, comprobarás cómo Gemini mejora el flujo de trabajo de desarrollo de aplicaciones. Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
En este curso, se presentan los conceptos de interpretabilidad y transparencia de la IA, así como se menciona la importancia de la transparencia de la IA para los ingenieros y desarrolladores. Se exploran métodos y herramientas funcionales para ayudar a lograr la interpretabilidad y transparencia en los modelos de IA y datos.
El objetivo de este curso es equiparte con los conocimientos y las herramientas que necesitas para descubrir los desafíos únicos que enfrentan los equipos de MLOps cuando implementan y administran modelos de IA generativa, y explorar cómo Vertex AI fortalece a los equipos de IA para optimizar los procesos de MLOps y alcanzar el éxito en los proyectos de IA generativa.
En este curso, explorarás tecnologías, herramientas y aplicaciones de búsqueda potenciadas por IA. Aprende sobre las búsquedas semánticas utilizando embeddings de vectores, acerca de las búsquedas híbridas combinando enfoques semánticos y de palabras clave, y sobre la generación mejorada por recuperación (RAG) minimizando las alucinaciones como un agente de IA fundamentado. Adquiere experiencia práctica con Vector Search de Vertex AI para desarrollar tu motor de búsqueda inteligente.
En este curso, se presenta Vertex AI Studio, una herramienta para interactuar con modelos de IA generativa, crear prototipos de ideas de negocio y llevarlas a producción. A través de un caso de uso envolvente, lecciones atractivas y un lab práctico, explorarás el ciclo de vida desde la instrucción hasta el producto y aprenderás cómo aprovechar Vertex AI Studio para aplicaciones multimodales de Gemini, diseño de instrucciones, ingeniería de instrucciones y ajuste de modelos. El objetivo es permitirte desbloquear el potencial de la IA generativa en tus proyectos con Vertex AI Studio.
En este curso, se te enseña a crear un modelo de generación de leyendas de imágenes con el aprendizaje profundo. Aprenderás sobre los distintos componentes de los modelos de generación de leyendas de imágenes, como el codificador y el decodificador, y cómo entrenar y evaluar tu modelo. Al final del curso, podrás crear tus propios modelos y usarlos para generar leyendas de imágenes.
En este curso, se presentan la arquitectura de transformadores y el modelo de Bidirectional Encoder Representations from Transformers (BERT). Aprenderás sobre los componentes principales de la arquitectura de transformadores, como el mecanismo de autoatención, y cómo se usa para crear el modelo BERT. También aprenderás sobre las diferentes tareas para las que puede usarse BERT, como la clasificación de texto, la respuesta de preguntas y la inferencia de lenguaje natural. Tardarás aproximadamente 45 minutos en completar este curso.
En este curso, se brinda un resumen de la arquitectura de codificador-decodificador, una arquitectura de aprendizaje automático importante y potente para realizar tareas de secuencia por secuencia, como las de traducción automática, resúmenes de texto y respuestas a preguntas. Aprenderás sobre los componentes principales de la arquitectura de codificador-decodificador y cómo entrenar y entregar estos modelos. En la explicación del lab, programarás una implementación sencilla de la arquitectura de codificador-decodificador en TensorFlow para generar poemas desde un comienzo.
Este curso es una introducción al mecanismo de atención, una potente técnica que permite a las redes neuronales enfocarse en partes específicas de una secuencia de entrada. Sabrás cómo funciona la atención y cómo puede utilizarse para mejorar el rendimiento de diversas tareas de aprendizaje automático, como la traducción automática, el resumen de textos y la respuesta a preguntas.
En este curso, se presenta una introducción a los modelos de difusión: una familia de modelos de aprendizaje automático que demostraron ser muy prometedores en el área de la generación de imágenes. Los modelos de difusión se inspiran en la física, específicamente, en la termodinámica. En los últimos años, los modelos de difusión se han vuelto populares tanto en investigaciones como en la industria. Los modelos de difusión respaldan muchos de los modelos de generación de imágenes y herramientas vanguardistas de Google Cloud. En este curso, se presenta la teoría detrás de los modelos de difusión y cómo entrenarlos y, luego, implementarlos en Vertex AI.
Completa la insignia de habilidad del curso introductorio Diseño de instrucciones en Vertex AI y demuestra tus habilidades para realizar las siguientes actividades: ingeniería de instrucciones, análisis de imágenes y aplicación de técnicas generativas multimodales en Vertex AI. Descubre cómo crear instrucciones eficaces, guía las respuestas de la IA generativa y aplica modelos de Gemini en situaciones de marketing de la vida real.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA responsable, por qué es importante y cómo la implementa Google en sus productos. También se presentan los 7 principios de la IA de Google.
Este es un curso introductorio de microaprendizaje en el que se explora qué son los modelos de lenguaje grandes (LLM), sus casos de uso y cómo se puede utilizar el ajuste de instrucciones para mejorar el rendimiento de los LLM. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
Aspectos básicos de Google Cloud: Infraestructura principal presenta conceptos y terminología importantes para trabajar con Google Cloud. Mediante videos y labs prácticos, en este curso se presentan y comparan muchos de los servicios de procesamiento y almacenamiento de Google Cloud, junto con importantes recursos y herramientas de administración de políticas.
Networking in Google Cloud es una serie de cursos de 6 partes. Te damos la bienvenida al primero de nuestra serie de seis cursos, Networking in Google Cloud: Fundamentals. En este curso, se ofrece una descripción general completa de los conceptos de redes esenciales, incluidos los aspectos básicos de las redes, las nubes privadas virtuales (VPC) y el uso compartido de redes de VPC. Además, en el curso se abordan las técnicas de registro y supervisión de red.
En este curso, se enseñan a los participantes técnicas para supervisar y mejorar el rendimiento de la infraestructura y las aplicaciones en Google Cloud. Con una combinación de presentaciones, demostraciones, labs prácticos y casos de éxito del mundo real, los asistentes adquieren experiencia para supervisar la pila completa, administrar y analizar registros en tiempo real, depurar código en producción, hacer un seguimiento de los cuellos de botella en el rendimiento de las aplicaciones y crear perfiles de uso de CPU y memoria.
En este curso, los estudiantes aprenderán a crear soluciones altamente confiables y eficientes en Google Cloud usando patrones de diseño comprobados. Es la continuación de los cursos Diseño de arquitecturas con Google Compute Engine o Diseño de arquitecturas con Google Kubernetes Engine. Se presupone que los equipos tienen experiencia práctica con las tecnologías que se abordan en cualquiera de esos cursos. A través de una serie de presentaciones, actividades de diseño y labs prácticos, los participantes aprenderán a definir y equilibrar los requisitos comerciales y técnicos para diseñar implementaciones de Google Cloud altamente confiables y disponibles, así como seguras y rentables.
Te damos la bienvenida al curso Introducción a Google Kubernetes Engine. Si te interesa Kubernetes, una capa de software ubicada entre tus aplicaciones y la infraestructura de tu hardware, estás en el lugar correcto. Google Kubernetes Engine te ofrece Kubernetes como un servicio administrado en Google Cloud. El objetivo de este curso es presentar los conceptos básicos de Google Kubernetes Engine o GKE, como se conoce comúnmente, y cómo alojar aplicaciones en contenedores y ejecutarlas en Google Cloud. El curso comienza con una introducción básica a Google Cloud, seguida de una descripción general de los contenedores y Kubernetes, la arquitectura de Kubernetes y las operaciones de esta plataforma.
En este curso acelerado a pedido, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud. A través de una combinación de clases por video, demostraciones y labs prácticos, los participantes exploran y, también, implementan elementos de las soluciones, como la interconexión segura de redes, el balanceo de cargas, el ajuste de escala automático, la automatización de la infraestructura y los servicios administrados.
En este curso acelerado a pedido, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud, con un enfoque en Compute Engine. Mediante una serie de clases por video, demostraciones y labs prácticos, los participantes pueden explorar y, también, implementar elementos de soluciones, incluidos componentes de infraestructura, como redes, sistemas y servicios de aplicaciones. En este curso, también se aborda la implementación de soluciones prácticas, incluidas las claves de encriptación proporcionadas por el cliente, la administración de seguridad y accesos, las cuotas y la facturación, y la supervisión de recursos.