Приєднатися Увійти

Mithilesh kumar Bhagat

Учасник із 2021

Срібна ліга

Кількість балів: 5800
Engineer Data for Predictive Modeling with BigQuery ML Earned черв. 20, 2022 EDT
Підготовка даних для інтерфейсів API машинного навчання в Google Cloud Earned черв. 20, 2022 EDT
Налаштування розподілу навантаження в Compute Engine Earned черв. 19, 2022 EDT
Preparing for your Professional Data Engineer Journey Earned черв. 18, 2022 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned черв. 13, 2022 EDT
Building Resilient Streaming Analytics Systems on Google Cloud Earned черв. 12, 2022 EDT
Building Batch Data Pipelines on Google Cloud Earned черв. 6, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals - українська Earned трав. 29, 2022 EDT
Create and Manage Cloud Resources Earned трав. 26, 2022 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned трав. 26, 2022 EDT
[DEPRECATED] Data Engineering Earned квіт. 28, 2022 EDT

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.

Докладніше

Пройдіть вступний кваліфікаційний курс Підготовка даних для інтерфейсів API машинного навчання в Google Cloud, щоб продемонструвати свої навички щодо очистки даних за допомогою сервісу Dataprep by Trifacta, запуску конвеєрів даних у Dataflow, створення кластерів і запуску завдань Apache Spark у Dataproc, а також виклику API машинного навчання, зокрема Cloud Natural Language API, Google Cloud Speech-to-Text API і Video Intelligence API. Кваліфікаційний значок – це ексклюзивна цифрова відзнака, яка підтверджує, що ви вмієте працювати з продуктами й сервісами Google Cloud і можете застосовувати ці знання в інтерактивному практичному середовищі. Щоб отримати кваліфікаційний значок і показати його колегам, пройдіть цей курс і підсумковий тест.

Докладніше

Пройдіть вступний кваліфікаційний курс Налаштування розподілу навантаження в Compute Engine, щоб продемонструвати свої навички написання команд gcloud і використання Cloud Shell, створення й розгортання віртуальних машин у Compute Engine, а також налаштування мережі й розподілювачів навантаження HTTP. Кваліфікаційний значок – це ексклюзивний цифровий значок від Google Cloud, який засвідчує, що ви знаєтеся на продуктах і сервісах цієї платформи й можете застосовувати ці знання в інтерактивному практичному середовищі. Щоб отримати кваліфікаційний значок і показати його колегам, пройдіть цей курс і підсумковий тест.

Докладніше

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Докладніше

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Докладніше

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

Докладніше

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Докладніше

Під час курсу ви зможете ознайомитися з продуктами й сервісами Google Cloud для роботи з масивами даних і машинним навчанням, які підтримують життєвий цикл роботи з даними для тренування моделей штучного інтелекту. У курсі розглядаються процеси, проблеми й переваги створення конвеєру масиву даних і моделей машинного навчання з Vertex AI у Google Cloud.

Докладніше

Пройдіть квест Create and Manage Cloud Resources й отримайте skill badge. Ви навчитеся виконувати наведені нижче дії. Писати команди gcloud і використовувати Cloud Shell, створювати й розгортати віртуальні машини в Compute Engine, запускати контейнерні додатки за допомогою Google Kubernetes Engine, а також налаштовувати розподілювачі навантаження для мережі й HTTP.Skill badge – це ексклюзивна цифрова винагорода, яка підтверджує, що ви вмієте працювати з продуктами й сервісами Google Cloud, а також застосовувати ці знання в інтерактивному практичному середовищі. Щоб отримати skill badge й показати його колегам, пройдіть цей квест і підсумковий тест.

Докладніше

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Докладніше

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

Докладніше