Marcos Silva Campal
Participante desde 2024
Liga Diamante
31595 pontos
Participante desde 2024
Conclua o selo de habilidade intermediário Dados de engenharia para modelagem preditiva com o BigQuery ML para mostrar que você sabe: criar pipelines de transformação de dados no BigQuery usando o Dataprep by Trifacta; usar o Cloud Storage, o Dataflow e o BigQuery para criar fluxos de trabalho de extração, transformação e carregamento de dados (ELT); e criar modelos de machine learning usando o BigQuery ML.
Conclua o selo de habilidade intermediário Criar um data warehouse com o BigQuery para mostrar que você sabe mesclar dados para criar novas tabelas; solucionar problemas de mesclagens; adicionar dados ao final com uniões; criar tabelas particionadas por data; além de trabalhar com JSON, matrizes e structs no BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber uma certificação digital que você pode compartilhar com seus contatos.
Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence.
Este é o primeiro de uma série de três cursos sobre processamento de dados sem servidor com o Dataflow. Nele, vamos relembrar o que é o Apache Beam e qual é a relação entre ele e o Dataflow. Depois, falaremos sobre a visão do Apache Beam e os benefícios do framework de portabilidade desse modelo de programação. Com esse processo, o desenvolvedor pode usar a linguagem de programação favorita com o back-end de execução que quiser. Em seguida, mostraremos como o Dataflow permite a separação entre a computação e o armazenamento para economizar dinheiro. Além disso, você vai aprender como as ferramentas de identidade, acesso e gerenciamento interagem com os pipelines do Dataflow. Por fim, vamos ver como implementar o modelo de segurança ideal para seu caso de uso no Dataflow.
Este curso ajuda estudantes a criar um plano de estudo para o exame de certificação PDE (Professional Data Engineer). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.
In this course, you will get hands-on experience applying advanced LookML concepts in Looker. You will learn how to use Liquid to customize and create dynamic dimensions and measures, create dynamic SQL derived tables and customized native derived tables, and use extends to modularize your LookML code.
Complete the introductory Build LookML Objects in Looker skill badge course to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
Neste curso, vamos conhecer o Gemini no BigQuery, um pacote de recursos com tecnologia de IA que auxilia no fluxo de trabalho de dados para inteligência artificial. Esses recursos incluem preparação e análise detalhada de dados, solução de problemas e geração de código, além da descoberta e visualização do fluxo de trabalho. Com explicações conceituais, um caso de uso prático e o laboratório, o curso ensina aos profissionais de dados como aumentar a produtividade e acelerar o pipeline de desenvolvimento.
Data Catalog é um serviço de gerenciamento de metadados totalmente gerenciado e escalonável. Com ele, as organizações descobrem, compreendem e gerenciam rapidamente todos os dados. Nesta Quest, vamos começar com algo simples - você aprenderá como pesquisar e adicionar tags a recursos de dados e metadados usando o Data Catalog. Depois que você aprender a desenvolver seus próprios modelos de tags correlacionados a dados da tabela do BigQuery, mostraremos como criar conectores do MySQL, PostgreSQL e SQLServer para o Data Catalog.
Este curso demonstra como usar modelos de ML/IA para tarefas generativas no BigQuery. Nele, você vai conhecer o fluxo de trabalho para solucionar um problema comercial com modelos do Gemini utilizando um caso de uso prático que envolve gestão de relacionamento com o cliente. Para facilitar a compreensão, o curso também proporciona instruções detalhadas de soluções de programação que usam consultas SQL e notebooks Python.
Complete the intermediate Manage Data Models in Looker skill badge course to demonstrate skills in the following: maintaining LookML project health; utilizing SQL runner for data validation; employing LookML best practices; optimizing queries and reports for performance; and implementing persistent derived tables and caching policies.
Conclua o selo de habilidade intermediário Criar modelos de ML com o BigQuery ML para mostrar que você sabe: criar e avaliar modelos de machine learning usando o BigQuery ML para fazer previsões de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam a habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Conclua o selo de habilidade introdutório Gerar insights a partir de dados do BigQuery para mostrar que você sabe gravar consultas SQL, consultar tabelas públicas e carregar dados de amostra no BigQuery, solucionar erros comuns de sintaxe com o validador de consultas no BigQuery e criar relatórios no Looker Studio fazendo a conexão com dados do BigQuery.
This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.
In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.
Conquiste o selo de habilidade introdutório Prepare os dados para relatórios e dashboards do Looker para mostrar que você sabe: filtrar, ordenar e dinamizar dados; mesclar resultados de diferentes Análises do Looker; e usar funções e operadores para criar dashboards e relatórios do Looker para análise e visualização de dados.
Este curso é voltado para analistas que querem aprender a usar o BigQuery para analisar dados. Com vídeos, laboratórios e demonstrações, abordamos vários assuntos sobre como ingerir, transformar e consultar dados no BigQuery para gerar insights que ajudam na tomada de decisões corporativas.
Neste curso para iniciantes, você vai aprender sobre o fluxo de trabalho de análise de dados no Google Cloud e sobre as ferramentas necessárias para explorar, analisar e visualizar dados. Também vamos falar sobre como compartilhar suas descobertas com partes interessadas. Com o auxílio de laboratórios práticos, aulas, testes, demonstrações e um estudo de caso, vamos aprender a transformar conjuntos de dados brutos em dados limpos para gerar visualizações e dashboards de alto impacto. Se você já trabalha com dados e quer ter sucesso no Google Cloud ou progredir na carreira, este curso vai ajudar você a começar. Qualquer pessoa que trabalha ou usa análise de dados de forma profissional pode se beneficiar com este curso.
Neste curso intensivo sob demanda, os participantes vão conhecer os serviços abrangentes e flexíveis de infraestrutura e plataforma fornecidos pelo Google Cloud, com foco no Compute Engine. Com o auxílio de videoaulas, demonstrações e laboratórios práticos, os participantes têm a chance de conhecer e implantar elementos da solução, incluindo componentes de infraestrutura, como redes, sistemas e serviços de aplicativos. O curso também aborda a implantação de soluções práticas, como chaves de criptografia fornecidas pelo cliente, gerenciamento de segurança e acesso, cotas e faturamento, além do monitoramento de recursos.
"Noções básicas do Google Cloud: infraestrutura principal" é uma apresentação da terminologia e de conceitos importantes para trabalhar com o Google Cloud. Usando vídeos e laboratórios práticos, o curso apresenta e compara vários serviços de armazenamento e computação do Google Cloud, além de ferramentas importantes para o gerenciamento de políticas e recursos.
Este curso ajuda você a se preparar para o exame Associate Cloud Engineer. Você vai aprender sobre os domínios do Google Cloud abordados no exame e como criar um plano de estudos para melhorar seu conhecimento sobre o assunto.