KONDAIAH AMUDALA
Mitglied seit 2021
Mitglied seit 2021
Mit dem Skill-Logo zum Kurs ML-Modelle mit BigQuery ML erstellen weisen Sie fortgeschrittene Kenntnisse in folgendem Bereich nach: Erstellen und Bewerten von Machine-Learning-Modellen mit BigQuery ML, um Datenvorhersagen zu treffen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
This course is an introduction to Vertex AI Notebooks, which are Jupyter notebook-based environments that provide a unified platform for the entire machine learning workflow, from data preparation to model deployment and monitoring. The course covers the following topics: (1) The different types of Vertex AI Notebooks and their features and (2) How to create and manage Vertex AI Notebooks.
In diesem Kurs lernen Sie die KI- und ML-Angebote von Google Cloud für Projekte mit prädiktiver und generativer KI kennen. Dabei werden die Technologien, Produkte und Tools vorgestellt, die für den gesamten Lebenszyklus der Datenaufbereitung für KI verfügbar sind. Der Kurs umfasst KI‑Grundlagen, ‑Entwicklung und ‑Lösungen. Data Scientists, KI-Entwickler und ML-Engineers sollen in diesem Kurs ihre Fähigkeiten und Kenntnisse durch ansprechende Lernangebote sowie praxisorientierte Übungen erweitern.
„Ihre Organisation mit generativen KI-Agenten voranbringen“ ist der fünfte und letzte Kurs des Lernpfads „Generative AI Leader“. In diesem Kurs erfahren Sie, wie Unternehmen mit benutzerdefinierten generativen KI-Agenten spezifische geschäftliche Herausforderungen meistern können. Sie lernen, wie Sie einen einfachen Agenten für generative KI erstellen, und machen sich mit den Komponenten dieser Agenten vertraut, z. B. mit Modellen, Reasoning Loops und Tools.
Transform Your Work With Gen AI Apps is the fourth course of the Gen AI Leader learning path. This course introduces Google’s gen AI applications, such as Google Workspace with Gemini and NotebookLM. It guides you through concepts like grounding, retrieval augmented generation, constructing effective prompts and building automated workflows.
Gen AI: Navigate the Landscape is the third course of the Gen AI Leader learning path. Gen AI is changing how we work and interact with the world around us. But as a leader, how can you harness its power to drive real business outcomes? In this course, you explore the different layers of building gen AI solutions, Google Cloud’s offerings, and the factors to consider when selecting a solution.
„Generative KI: Grundlegende Konzepte“ ist der zweite Kurs des Lernpfads „Generative AI Leader“. In diesem Kurs lernen Sie die grundlegenden Konzepte der generativen KI kennen. Sie erfahren, wie sich KI, ML und generative KI unterscheiden und wie generative KI geschäftliche Herausforderungen mithilfe verschiedener Datentypen bewältigt. Außerdem erhalten Sie Einblicke in die Strategien von Google Cloud, um die Einschränkungen von Foundation Models zu überwinden, und in die wichtigsten Herausforderungen für eine verantwortungsbewusste und sichere KI-Entwicklung und ‑Bereitstellung.
„Generative KI ist mehr als nur Chatbots“ ist der erste Kurs des Lernpfads „Generative AI Leader“ und hat keine Voraussetzungen. In diesem Kurs geht es nicht nur um die Grundlagen von Chatbots, sondern auch um das wahre Potenzial von generativer KI für Ihr Unternehmen. Sie lernen Konzepte wie Foundation Models und Prompt Engineering kennen, die für die Nutzung der Leistungsfähigkeit von generativer KI entscheidend sind. Außerdem werden wichtige Überlegungen behandelt, die Sie bei der Entwicklung einer erfolgreichen Strategie für generative KI für Ihr Unternehmen berücksichtigen sollten.
Mit dem Skill-Logo Infrastruktur mit Terraform in Google Cloud erstellen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Grundsätze von Infrastruktur als Code (IaC) unter Verwendung von Terraform, Bereitstellen und Verwalten von Google Cloud-Ressourcen mit Terraform-Konfigurationen, effektives Statusmanagement (lokal und remote) und die Modularisierung von Terraform-Code für Wiederverwendbarkeit und Organisation.
Erhalten Sie ein Skill-Logo, indem Sie den Kurs Cloud-Architektur: Entwerfen, umsetzen und verwalten abschließen. Dabei können Sie Fähigkeiten nachweisen, die für folgende Aufgaben nötig sind: eine öffentlich zugängliche Website mit Apache-Webservern bereitstellen, eine Compute Engine-VM mithilfe von Startscripts konfigurieren, sicheres RDP durch Nutzung von Firewallregeln und eines Windows-Bastion Hosts konfigurieren, ein Docker-Image in einem Kubernetes-Cluster bereitstellen und anschließend aktualisieren sowie eine Cloud SQL-Instanz erstellen und eine MySQL-Datenbank importieren. Diese Aufgabenreihe bietet eine gute Grundlage für bestimmte Themen, die Teil der Zertifizierungsprüfung zum Google Cloud Certified Professional Cloud Architect sind. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer …
Mit dem Skill-Logo zum Kurs Kostenoptimierung für die Google Kubernetes Engine weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen und Verwalten von Clustern für mehrere Mandanten, Überwachen der Ressourcenauslastung nach Namespace, Konfigurieren des Cluster- und Pod-Autoscalings zur Steigerung der Effizienz, Einrichten des Load Balancings zur optimalen Verteilung von Ressourcen und Implementieren von Aktivitäts- und Bereitschaftsprüfungen zum Sicherstellen von Anwendungszustand und Kosteneffektivität. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
Erhalten Sie ein Skill-Logo, indem Sie den Kurs Google Cloud-Netzwerk entwickeln abschließen. Dabei wird anhand verschiedener Aufgaben behandelt, wie Sie Anwendungen bereitstellen und beobachten, darunter: IAM-Rollen prüfen, den Zugriff auf Projekte ermöglichen/entfernen, VPC-Netzwerke erstellen, Compute Engine-VMs bereitstellen und beobachten, SQL-Abfragen schreiben, VMs in der Compute Engine bereitstellen und beobachten sowie Anwendungen mithilfe von Kubernetes und mehreren Deploymentmodellen bereitstellen.
Welcome to the second part of the two part course, Observability in Google Cloud. This course is all about application performance management tools, including Error Reporting, Cloud Trace, and Cloud Profiler.
Erhalten Sie ein Skill-Logo, indem Sie den Kurs „Umgebung für die Anwendungsentwicklung in Google Cloud einrichten“ abschließen. Dabei lernen Sie, wie Sie eine speicherorientierte Cloud-Infrastruktur mithilfe der grundlegenden Funktionen der folgenden Technologien erstellen und verbinden: Cloud Storage, Identity and Access Management, Cloud Functions und Pub/Sub.
Erhalten Sie ein Skill-Logo, indem Sie den Kurs Google Cloud-Netzwerk einrichten abschließen. Dabei lernen Sie, wie Sie grundlegende Netzwerkaufgaben in Google Cloud ausführen. Sie richten ein benutzerdefiniertes Netzwerk ein, fügen Firewallregeln für Subnetze hinzu, erstellen VMs und testen dann die Latenz bei der Kommunikation zwischen den VMs. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer interaktiven praxisnahen Umgebung anwenden. Absolvieren Sie den Kurs und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu bekommen, das Sie in Ihrem Netzwerk posten können.
Welcome to the Getting Started with Google Kubernetes Engine course. If you're interested in Kubernetes, a software layer that sits between your applications and your hardware infrastructure, then you’re in the right place! Google Kubernetes Engine brings you Kubernetes as a managed service on Google Cloud. The goal of this course is to introduce the basics of Google Kubernetes Engine, or GKE, as it’s commonly referred to, and how to get applications containerized and running in Google Cloud. The course starts with a basic introduction to Google Cloud, and is then followed by an overview of containers and Kubernetes, Kubernetes architecture, and Kubernetes operations.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including securely interconnecting networks, load balancing, autoscaling, infrastructure automation and managed services.
In „Google Cloud-Grundlagen: Kerninfrastruktur“ werden wichtige Konzepte und die Terminologie für die Arbeit mit Google Cloud vorgestellt. In Videos und praxisorientierten Labs werden viele Computing- und Speicherdienste von Google Cloud sowie wichtige Tools für die Ressourcen- und Richtlinienverwaltung präsentiert und miteinander verglichen.
This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Dieser Kurs vermittelt Ihnen eine Zusammenfassung der Encoder-Decoder-Architektur, einer leistungsstarken und gängigen Architektur, die bei Sequenz-zu-Sequenz-Tasks wie maschinellen Übersetzungen, Textzusammenfassungen und dem Question Answering eingesetzt wird. Sie lernen die Hauptkomponenten der Encoder-Decoder-Architektur kennen und erfahren, wie Sie diese Modelle trainieren und bereitstellen können. Im dazugehörigen Lab mit Schritt-für-Schritt-Anleitung können Sie in TensorFlow von Grund auf einen Code für eine einfache Implementierung einer Encoder-Decoder-Architektur erstellen, die zum Schreiben von Gedichten dient.
Dieser Kurs bietet eine Einführung in die Transformer-Architektur und das BERT-Modell (Bidirectional Encoder Representations from Transformers). Sie lernen die Hauptkomponenten der Transformer-Architektur wie den Self-Attention-Mechanismus kennen und erfahren, wie Sie diesen zum Erstellen des BERT-Modells verwenden. Darüber hinaus werden verschiedene Aufgaben behandelt, für die BERT genutzt werden kann, wie etwa Textklassifizierung, Question Answering und Natural-Language-Inferenz. Der gesamte Kurs dauert ungefähr 45 Minuten.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
In diesem Kurs wird der Aufmerksamkeitsmechanismus vorgestellt. Dies ist ein leistungsstarkes Verfahren, das die Fokussierung neuronaler Netzwerke auf bestimmte Abschnitte einer Eingabesequenz ermöglicht. Sie erfahren, wie der Aufmerksamkeitsmechanismus funktioniert und wie Sie damit die Leistung verschiedener Machine Learning-Tasks wie maschinelle Übersetzungen, Zusammenfassungen von Texten und Question Answering verbessern können.
In diesem Kurs werden Diffusion-Modelle vorgestellt, eine Gruppe verschiedener Machine Learning-Modelle, die kürzlich einige vielversprechende Fortschritte im Bereich Bildgenerierung gemacht haben. Diffusion-Modelle basieren auf physikalischen Konzepten der Thermodynamik und sind in den letzten Jahren in der Forschung und Industrie sehr beliebt geworden. Dabei stützen sich Diffusion-Modelle auf viele innovative Modelle und Tools zur Bildgenerierung in Google Cloud. In diesem Kurs werden Ihnen die theoretischen Grundlagen der Diffusion-Modelle erläutert und wie Sie diese Modelle über Vertex AI trainieren und bereitstellen können.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was verantwortungsbewusste Anwendung von KI bedeutet, warum sie wichtig ist und wie Google dies in seinen Produkten berücksichtigt. Darüber hinaus werden die 7 KI-Grundsätze von Google behandelt.
In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.
This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
"This course, Machine Learning in the Enterprise - Locales, is intended for non-English learners. If you want to take this course in English, please enroll inMachine Learning in the Enterprise". This course encompasses a real-world practical approach to the ML Workflow: a case study approach that presents an ML team faced with several ML business requirements and use cases. This team must understand the tools required for data management and governance and consider the best approach for data preprocessing: from providing an overview of Dataflow and Dataprep to using BigQuery for preprocessing tasks. The team is presented with three options to build machine learning models for two specific use cases. This course explains why the team would use AutoML, BigQuery ML, or custom training to achieve their objectives. A deeper dive into custom training is presented in this course. We describe custom training requirements from training code structure, storage, and loading large datasets to e…
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
One of the best ways to review something is to work with the concepts and technologies that you have learned. So, this course is set up as a workshop and in this workshop, you will do End-to-End Machine Learning with TensorFlow on Google Cloud Platform. It involves building an end-to-end model from data exploration all the way to deploying an ML model and getting predictions from it. This is the first course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Production Machine Learning Systems course.
This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.
This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
Mit dem Skill-Logo Load Balancing in der Compute Engine implementieren weisen Sie Kenntnisse in folgenden Bereichen nach: Schreiben von gcloud-Befehlen, Verwenden von Cloud Shell, Erstellen und Bereitstellen von virtuellen Maschinen in der Compute Engine und Konfigurieren von Netzwerk- und HTTP-Load-Balancern. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud vergeben wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer praxisnahen Geschäftssituation anwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.
This content is deprecated. Please see the latest version of the course, here.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, virtual machines and applications services. You will learn how to use the Google Cloud through the console and Cloud Shell. You'll also learn about the role of a cloud architect, approaches to infrastructure design, and virtual networking configuration with Virtual Private Cloud (VPC), Projects, Networks, Subnetworks, IP addresses, Routes, and Firewall rules.
This course version is for non-English only. If you wish to take this course in English, please enroll here: Elastic Google Cloud Infrastructure: Scaling and Automation. If you wish to take it in another language, change your language in settings to see availability.
This course has been updated, please enroll in the new Elastic Google Cloud Infrastructure: Scaling and Automation.