這堂隨選密集課程會向參加人員說明 Google Cloud 提供的全方位彈性基礎架構和平台服務,尤其側重於 Compute Engine。這堂課程結合了視訊講座、示範和實作研究室,可讓參加人員探索及部署解決方案元素,例如網路、虛擬機器和應用程式服務等基礎架構元件。您會瞭解如何透過控制台和 Cloud Shell 使用 Google Cloud。另外,您也能瞭解雲端架構師的職責、基礎架構設計方法,以及具備虛擬私有雲 (VPC)、專案、網路、子網路、IP 位址、路徑和防火牆規則的虛擬網路設定。
Model tuning is an effective way to customize large models to your tasks. It's a key step to improve the model's quality and efficiency. Model tuning provides benefits such as higher quality results for your specific tasks and increased model robustness. You learn some of the tuning options available in Vertex AI and when to use them.
Model Garden is a model library that helps you discover, test, and deploy models from Google and Google partners. Learn how to explore the available models and select the right ones for your use case. And how to deploy and interact with Model Garden models through the Google Cloud console and APIs.
This video covers how to create a 'project notebook' in NotebookLM by adding all relevant sources to build a central, searchable knowledge hub for your team.
This video covers how to use NotebookLM for common marketing tasks like analyzing customer feedback, conducting market research, and generating content ideas.
This video covers how to use the Video Overviews feature in NotebookLM to automatically generate a short explainer video based on your source documents.
This video covers how to use the 'Discover Sources' feature in NotebookLM to find and import relevant web-based sources directly into your research project.
This video covers how to use the Mind Maps feature in NotebookLM to automatically create a visual representation of your sources, helping you understand connections and key concepts.
This video covers how to use NotebookLM as a personal research assistant by adding sources, asking questions, and generating new content formats based on your documents.
This video covers how to use Gemini in Gmail to draft new emails, refine their tone, respond with context from Drive files, and use smart reply suggestions.
This video covers how to use the 'Help me create' feature in Google Docs to generate a complete, formatted document by referencing content from other files in your Drive.
This video covers five key ways to use Google's AI tools, including Gemini in Workspace, the Gemini app, and NotebookLM, to enhance your daily productivity.
This video covers how to use Gemini in Gmail to summarize emails, find information, and draft replies, helping you manage your inbox more efficiently.
This video covers how to use Gemini in Slides to automatically generate meeting recaps and draft follow-up emails, which can streamline your post-meeting workflow and save you time.
This video covers how you can leverage Gemini's advanced AI capabilities within Google Sheets to effortlessly pull data and generate insights in minutes, all without the need for any technical or coding background.
This video will cover how to leverage Gemini Gems to create authentic social media posts in your leader's unique voice. Learn to overcome the challenge of scaling executive social presence by training a Gem with writing samples and clear instructions. Discover how to generate engaging posts quickly, saving time while amplifying thought leadership and ensuring authenticity.
This video covers how you can create your own Brevity Gem to summarize and transform messy notes or long documents into clear, concise, executive-ready summaries.
This video covers how to use Gemini and Apps Script to automate manual tasks across Google Workspace. You'll learn to prompt Gemini to generate Apps Script code that automatically drafts email reminders in Google Sheets for tasks not marked 'Complete.' Automate your workflow with little to no technical expertise, freeing up time for more important work and eliminating manual follow-ups.
This video covers how you can leverage Notebook LM to "eat the frog" on your to-do list by automating complex tasks like summarizing legislation and mapping services, saving you hours of work.
This video covers how to eliminate tedious manual data entry using Gemini. Learn how to take a picture or screenshot of data (from PDFs, paper, or images) and prompt Gemini to instantly convert it into a structured Google Sheet. Discover this simple hack to save countless hours transcribing data, turning Gemini into your personal data entry assistant. Just snap, prompt, and export!
AI Boost Bites is a video series designed to help you leverage Google's AI tools in your daily work. Each episode, under 10 minutes, features a quick video demonstrating a real-world AI use case or topic. After the video, you'll get a challenge to apply what you've learned. It's an easy, interactive way to boost your AI skills and improve your productivity.
This video will cover how to use NotebookLM to gather and analyze publicly available information, combine it with internal documents, and extract key competitive insights.
This video covers how to personalize your Gemini results in Google Workspace. Learn to incorporate documents and research papers directly into your prompts using the "@" symbol to get more targeted and relevant AI output tailored to your needs.
This video covers how you can use Gemini to summarize long documents in Google Workspace, so you can quickly get the information you need and save time. You'll learn how to use Gemini to summarize entire documents or just selected text, as well as how to use Gemini in Drive to summarize across multiple files.
This video covers prompt engineering fundamentals for effective AI communication. Learn a simple framework (Persona, Task, Context, Format) to craft clear prompts, getting better, faster results from Gemini in Google Workspace. Discover how to use natural language, be specific, and iterate for optimal AI assistance.
This video will cover how you can leverage Gemini's advanced AI capabilities in Google Docs to brainstorm ideas, draft various marketing content, and collaborate with your team.
This video covers how NotebookLM can revolutionize customer insight gathering from call or chat transcripts. You'll learn to upload PDF transcripts of hundreds of conversations (even multilingual ones!) and quickly extract key themes, trending topics, and actionable insights without listening for hours. Discover how to save findings, share notebooks, and even generate interactive podcast summaries of your data.
This video covers how to create your own Gemini Gems, advanced AI capabilities that can automate repetitive tasks and supercharge your productivity.
Complete the Build search and recommendations AI Applications skill badge to demonstrate your proficiency in deploying search and recommendation applications through AI Applications. Additionally, emphasis is placed on constructing a tailored Q&A system utilizing data stores. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
This lab tests your ability to develop a real-world Generative AI Q&A solution using a RAG framework. You will use Firestore as a vector database and deploy a Flask app as a user interface to query a food safety knowledge base.
Complete the Edit images with Imagen skill badge to demonstrate your skills with Imagen's mask modes and editing modes to edit images according to certain prompts. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Complete the Develop solutions using Model Garden APIs skill badge to demonstrate your ability to use Vertex AI Model Garden features when building gen AI solutions. You will use partner APIs such as Anthropic Claude ands Meta Llama, deploy and programatically access foundation models like Gemma and Stable Diffusion XL and access Vertex AI Endpoints. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Complete the Extend Gemini with controlled generation and Tool use skill badge to demonstrate your proficiency in connecting models to external tools and APIs. This allows models to augment their knowledge, extend their capabilities and interact with external systems to take actions such as sending an email. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!"
本課程會說明如何使用 Google 可攜式 UI 工具包 Flutter 來開發應用程式,並將應用程式與 Google 生成式 AI 模型系列 Gemini 整合。您也會用到 Vertex AI Agent Builder,此為建構及管理 AI 代理和應用程式的 Google 平台。
使用生成式 AI 為使用者提供更好的搜尋流程,強化網站的瀏覽體驗。在本課程中,您會瞭解如何使用 Vertex AI Search,讓網站使用者能享有生成式搜尋體驗,進一步發掘網站內容。身為網站編輯,您也會學習如何使用生成式 AI 輸出建議,迅速有效地翻譯及調整內容。
大型語言模型 (LLM) 誕生之後,生成式 AI 應用程式帶來的嶄新使用者體驗,可說是幾乎前所未有。身為應用程式開發人員,您要如何在 Google Cloud,運用生成式 AI 建立出色的互動式應用程式? 本課程將帶您瞭解生成式 AI 應用程式,以及如何使用提示設計和檢索增強生成 (RAG),透過 LLM 建構強大的應用程式。我們也會介紹可用於正式環境的生成式 AI 應用程式架構。您將建構採用 LLM 和 RAG 的對話應用程式。
本課程針對評估生成式和預測式 AI 模型,向機器學習從業人員介紹相關的基礎工具、技術和最佳做法。模型評估是機器學習的重要領域,確保這類系統能在正式環境中提供可靠、準確且成效優異的結果。 學員將深入瞭解多種評估指標與方法,以及適用於不同模型類型和工作的應用方式。此外,也會特別介紹生成式 AI 模型帶來的獨特難題,並提供有效的應對策略。透過 Google Cloud Vertex AI 平台,學員將瞭解在模型挑選、最佳化和持續監控方面,該如何導入穩健的評估程序。
這堂課程會說明 BigQuery 中的檢索增強生成 (RAG) 解決方案,協助您減少 AI 幻覺。當中介紹的 RAG 工作流程包含建立嵌入項目、搜尋向量空間,以及生成更符合需求的答案。另外,這堂課程會解釋這些步驟背後的概念與原因,以及實際運用 BigQuery 實作的方法。完成課程之後,學員將學會使用 BigQuery,以及 Gemini 和嵌入模型等生成式 AI 模型,建立 RAG pipeline 來處理自己的 AI 幻覺應用實例。
An AI-driven Contact Center as a Service (CCaaS) solution that is built natively on Google Cloud. The Implementation course provides Partners with essential training about the delivery of key features and functionality. The course explores how to leverage your key understanding of the product into successful customer implementation engagements with tips, best practices, guides, and more. Note: This product was previously called Contact Center AI (CCAI) Platform you may see references to that name still in the course, however the course is technically correct.
Configure and Maintain CCAIP as an Admin is a course that provides end users with essential learning about the core features, functionality, reporting, and configuration information most relevant to the role. This course is most appropriate for those who perform administrative functions to support the operation of the contact center as well as analyze, troubleshoot, and configure the platform to best meet the demands of customers. While this program will review some monitoring and reporting aspects, those topics are explored in depth in the course titled, “Managing Functions and Reporting with CCAIP.”
Manage Functions and Reporting with CCAI Platform provides end-users with essential training about the core features, functionality, monitoring, reporting, and configuration information that is most relevant to the role. This course is most appropriate for those at the managerial level of the contact center who are tasked with monitoring the effectiveness, efficiency, and KPI attainment for all consumer interactions. While this program will review some aspects of settings and configuration options, the major focus is on reporting functionality in CCAI Platform.
This course teaches contact center agents about the core agent features and functionality in Contact Center AI Platform (CCAIP). CCAIP is a unified contact center platform that accelerates an organization's ability to leverage and deploy CCAI without relying on multiple technology providers. This course is most appropriate for those who handle consumer interactions via chat and call.
Welcome to Hybrid Cloud Infrastructure Foundations with Anthos! This is the first course of the Architecting Hybrid Cloud Infrastructure with Anthos path. Anthos enables you to build and manage modern applications, and gives you the freedom to choose where to run them. Anthos gives you one consistent experience in both your on-premises and cloud environments. During this course, you will be presented with modules that will take you through skills that you will use as an architect or administrator running Anthos environments. The modules in this course include videos, hands-on labs, and links to helpful documentation.
In this course, you'll learn about Kubernetes and Google Kubernetes Engine (GKE) security; logging and monitoring; and using Google Cloud managed storage and database services from within GKE. This is the second course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Reliable Google Cloud Infrastructure: Design and Process course or the Hybrid Cloud Infrastructure Foundations with Anthos course.
「生成式 AI 代理:實現組織轉型」是 Generative AI Leader 學習路徑的第五門課,也是最後一門。本課程將探討組織如何運用自訂生成式 AI 代理,解決特定的業務難題。您將動手練習建構基本的生成式 AI 代理,同時熟悉這類代理的各種元件,例如模型、推論迴圈和工具。
「生成式 AI 應用程式:徹底改變工作方式」是 Generative AI Leader 學習路徑的第四門課程。本課程將介紹 Google 的生成式 AI 應用程式,例如 Gemini for Workspace 和NotebookLM,也會引導您瞭解各種概念,像是建立基準、檢索增強生成、建構有效的提示詞,以及打造自動化工作流程等。
「生成式 AI:掌握幕後技術與環境」是 Generative AI Leader 學習路徑的第三門課程。生成式 AI 正在改變我們的工作方式,以及我們如何與周遭的世界互動。身為領導者,您要如何駕馭 AI 強大的功能,創造實際業務成果?在本課程中,您將認識建構生成式 AI 解決方案時的各個層面、Google Cloud 產品,以及選擇解決方案時應考量的因素。
「生成式 AI: 瞭解基礎概念」是 Generative AI Leader 學習路徑的第二門課程。在本課程中,您將瞭解 AI、機器學習和生成式 AI 的差異,以及各種資料類型如何協助生成式 AI 解決業務難題,進而掌握生成式 AI 的基礎概念。您還能深入瞭解 Google Cloud 應對基礎 模型限制的策略,以及開發、部署安全且負責任的 AI 技術時面臨的主要挑戰。
「生成式 AI:不只是聊天機器人」是 Generative AI Leader 學習路徑的第一門課程,沒有任何修課條件。本課程將帶您超越基本知識,進一步瞭解聊天機器人,探索如何在組織中充分發揮生成式 AI 的潛力。您將瞭解基礎模型和提示工程等概念,掌握善用生成式AI 的關鍵。本課程也會帶您瞭解擬定生成式 AI 策略時的多種重要考量,協助您為組織擬定出成功的策略。
In this course, you’ll learn to use the Google Agent Development Kit to build complex, multi-agent systems. You will build agents equipped with tools, and connect them with parent-child relationships and flows to define how they interact. You’ll run your agents locally and deploy them to Vertex AI Agent Engine to run as a managed agentic flow, with infrastructure decisions and resource scaling handled by Agent Engine. Please note these labs are based off a pre-released version of this product. There may be some lag on these labs as we provide maintenance updates.
The course explores advanced services such as machine learning, and operational topics such as application deployment, monitoring, and troubleshooting. In addition, we’ll introduce GDC software upgrades, logging, billing, and cost monitoring.
The course examines service resources or workload components that exist in projects. You’ll learn about Kubernetes in GDC, Artifact Registry, GDC Object Storage, Database Service, Networking, and Key Management and Security.
This course provides an introduction to the GDC platform—which enables you to host, control, and manage infrastructure and services directly on your premises. GDC air-gapped is one component of Google Distributed Cloud offering which aligns to Google’s digital sovereignty vision. It supports public-sector customers and commercial entities that have strict data residency, security or privacy requirements.
This L300 course explores the intricacies of the hardware and networking infrastructure, examines the role of Kubernetes in container orchestration, and how to master the deployment process. The course emphasizes critical security aspects, guiding you through defense-in-depth design, zero-trust architecture, and essential operational security measures for protecting sensitive data. You'll also gain valuable insights into operational aspects, such as resource management, upgrades, and solutions tailored for GDC customers.
This L200 course comprehensively explores GDC air-gapped's concepts, architecture, and operational aspects, equipping learners with the knowledge to deploy and manage this solution effectively. The course delves into topics such as the roles of vendors and partners, hardware and software components, zero trust security, multi-tenancy, support and operations, observability, Identity and Access Management, managed services, and the GDC Sandbox environment. Furthermore, the course provides insights into compliance and accreditation processes, ensuring learners understand the regulatory landscape and can navigate it successfully. By the end of this course, learners will have a solid understanding of GDC air-gapped and be prepared to leverage its capabilities for their organization's needs.
In this course, you will learn about GDC air-gapped (previously known as GDC Hosted), an offering from Google Distributed Cloud. This course provides both a business and technical overview of GDC air-gapped, exploring its key features and target customers. Participants will gain insights into GDC air-gapped's value proposition and learn how to effectively communicate its benefits to potential clients, enabling them to qualify for sales opportunities.
Networking in Google cloud is a 6 part course series. Welcome to the first course of our six part course series, Networking in Google Cloud: Fundamentals. This course provides a comprehensive overview of core networking concepts, including networking fundamentals, virtual private clouds (VPCs), and the sharing of VPC networks. Additionally, the course covers network logging and monitoring techniques.
In this skill badge, you will demonstrate your ability to deploy Google Agentspace and set up data stores and actions. To learn these skills, we encourage you to take the course Accelerate Knowledge Exchange with Agentspace.
This L300 course offers a comprehensive exploration of GDC connected, encompassing design, deployment, operations, and advanced networking. It explores the architecture, configuration, and management of GDC infrastructure, including server setup, control plane operations, and network connectivity. The course also covers operational aspects, like high availability, failover, and observability, along with advanced networking topics such as APIs, network functions, and plugins.
This L200 course comprehensively explores GDC connected concepts, architecture, and operational aspects, equipping learners with the knowledge to deploy and manage this solution effectively. The course delves into topics such as its survivability features and best practices, security, networking, software stack, and hardware options. Furthermore, the course provides insights into its operating model. By the end of this course, learners will have a solid understanding of GDC connected and be prepared to leverage its capabilities for their organization's needs.
In "Architecting with Google Kubernetes Engine- Workloads", you'll embark on a comprehensive journey into cloud-native application development. Throughout the learning experience, you'll explore Kubernetes operations, deployment management, GKE networking, and persistent storage. This is the first course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Architecting with Google Kubernetes Engine- Production course.
在 「Google Kubernetes Engine 架構:基礎知識」的課程中,您將復習 Google Cloud 的配置和原則,接著是建立和管理軟體容器簡介和 Kubernetes 架構簡介。 這是 Google Kubernetes Engine 架構系列中的第一項課程。完成此課程後,請註冊 Google Kubernetes Engine 架構:工作負載課程。
This course is for deployment personnel of Google Cloud and its partner organizations who are tasked with managing cultural change and skill gaps of customers adopting Google Workspace, engaging sponsors and enlisting the support of customer stakeholders, communicating the anticipated changes to the customer and their users. It will guide you through the Workspace change management methodology and all phases of the customer journey.
This course on workspace transformation guides participants through modules designed to optimize and transform business environments using Google Workspace. It covers the Google Workspace Customer Success Methodology, provisioning processes, authentication and system access, mail routing, migration strategies, and coexistence planning to ensure a seamless transition and effective implementation.
This course equips app developers with the skills to integrate generative AI features into their applications using Firebase Genkit. You learn how to leverage Firebase Genkit's capabilities for backend flows and seamless model execution, all using Node.js. The course guides you through the entire process, from prototyping to production, providing a pattern for building next-generation AI-powered applications.
This course provides comprehensive skills on VM migration, from the initial assessment through the final implementation through presentations, demonstrations, and whiteboard session.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating data from Snowflake to BigQuery. Sample data will be used during the migration. Learners will complete several labs that focus on the process of transferring schema, data and related processes to corresponding Google Cloud products.There will be one or more challenge labs that will test the learners' understanding of the topics. "This learning path aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating data from Snowflake to BigQuery.
在本課程中,您會學到 Google Cloud 上的資料工程、資料工程師的角色與職責,以及這些內容如何對應至 Google Cloud 提供的服務。您也將瞭解處理資料工程難題的許多方法。
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Migration from Oracle to Cloud Spanner using HarbourBridge. This course describes an example scenario that uses sample data during the migration. This process includes using HarbourBridge for Assessment, Schema Conversion, Schema Transformation, Data Migration, and supporting tools for data validation.
本課程將帶您認識 Google Vids,這是一款線上影片製作與編輯應用程式,僅提供部分 Google Workspace 使用者使用。完成本課程的教學與示範後,您將瞭解如何在工作場合製作出動人的影片。此外,本課程也將說明如何在影片中融入媒體、音訊與影像片段、自訂樣式,以及輕鬆分享作品。 部分 Vids 功能採用生成式 AI 技術,可協助您更有效率地完成工作。提醒您,Gemini 等生成式 AI 工具提供的資訊可能不正確或不適當。請勿將 Gemini 功能提供的資訊視為醫療、法律、財務或其他專業建議。也請留意,Gemini 功能提供的建議並不代表 Google 觀點,Google 對此概不負責。
Gemini for Google Workspace 是一項外掛程式,可讓使用者存取生成式 AI 功能。本課程使用影片、實作活動和練習範例,深入介紹 Google 雲端硬盤中的 Gemini 的功能。 課程結束後,您將具備 Google 雲端硬盤中的 Gemini 的知識及技能,可自信地運用這項工具提升工作流程的效率。
In this course, you will learn about GDC connected (previously known as GDC Edge), an offering from Google Distributed Cloud. This course provides both a business and technical overview of GDC connected, exploring its key features and target customers. Participants will gain insights into GDC connected's value proposition and learn how to effectively communicate its benefits to potential clients, enabling them to qualify for sales opportunities.
This course focuses on how you can leverage the Google Cloud Analytics and AI/ML offerings to integrate and innovate with SAP
This course is the third part of the SAP on Google Cloud Platform learning path. Following the SAP on Google Cloud Foundations eLearning and the SAP on Google Cloud Self-paced labs. Participants should have completed these two components before. This course consists of hands-on labs that provide a holistic experience of optimally configuring SAP on Google Cloud. Participants will learn to configure SAP on Google Cloud, and what best practices are, leaving the course with actionable experience to configure SAP on Google Cloud and run SAP workloads on Google Cloud for their customers.
Perform a migration from Oracle to BigQuery using SQL Translation and DataFlow using Sample Data. Learners will complete a quiz that focuses on the process of transferring both schema and data from an Oracle enterprise data warehouse to BigQuery.
This course covers BigQuery fundamentals for professionals who are familiar with SQL-based cloud data warehouses in Oracle and want to begin working in BigQuery. Through interactive lecture content and hands-on labs, you learn how to provision resources, create and share data assets, ingest data, and optimize query performance in BigQuery. Drawing upon your knowledge of Oracle, you also learn about similarities and differences between Oracle and BigQuery to help you get started with data warehouses in BigQuery. After this course, you can continue your BigQuery journey by completing the skill badge quest titled Build and Optimize Data Warehouses with BigQuery.
本課程會說明 Gemini in BigQuery,這是一套由 AI 輔助的功能,可協助「從資料到 AI」的工作流程。這些功能包含資料探索和準備、程式碼生成和疑難排解,以及工作流程探索和視覺化。本課程將透過概念解說、應用實例和實作實驗室,協助資料從業人員提升工作效率,並加速開發 pipeline。
Agentspace 結合 Google 的搜尋和 AI 專業知識,企業員工只要在單一搜尋列輸入關鍵字,就能查找文件儲存空間、電子郵件、對話、支援單處理系統和其他資料來源中的特定資訊。Agentspace 助理還能協助發想創意、研究資訊、列出文件大綱及執行其他動作,例如邀請同事加入日曆活動,加快完成知識型工作,並協作各種內容。
Imagen provides a suite of generative AI tools to help you accelerate your creative workflows. This course provides you with demonstrations of all the key features currently found in Imagen.
Do you want to keep your users engaged by suggesting content they'll love? This course equips you with the skills to build a cutting-edge recommendations app using your own data with no prior machine learning knowledge. You learn to leverage AI Applications to build recommendation applications so that audiences can discover more personalized content, like what to watch or read next, with Google-quality results customized using optimization objectives.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating data from Oracle to Cloud SQL using the Ora2Pg. An example scenario using sample data will be used to demonstrate the migration. Learners will complete an assessment quiz that focuses on the process of transferring schema, data and related processes to corresponding Google Cloud products.
This course educates partners on key concepts around deploying Google Cloud VMware Engine (GCVE) and leveraging HCX to migrate VMs from on-premises VMware to GCVE.
This course covers BigQuery fundamentals for professionals who are familiar with SQL-based cloud data warehouses in Snowflake and want to begin working in BigQuery. Through interactive lecture content and hands-on labs, you learn how to provision resources, create and share data assets, ingest data, and optimize query performance in BigQuery. Drawing upon your knowledge of Snowflake, you also learn about similarities and differences between Snowflake and BigQuery to help you get started with data warehouses in BigQuery. After this course, you can continue your BigQuery journey by completing the skill badge quest titled Build and Optimize Data Warehouses with BigQuery.
This workload aims to upskill Google Cloud partners to perform specific tasks for modernization using LookML on BigQuery. A proof-of-concept will take learners through the process of creating LookML visualizations on BigQuery. During this course, learners will be guided specifically on how to write Looker modeling language, also known as LookML and create semantic data models, and learn how LookML constructs SQL queries against BigQuery. At a high level, this course will focus on basic LookML to create and access BigQuery objects, and optimize BigQuery objects with LookML.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating workloads from Hadoop environments to corresponding Google Cloud services and hosted products. The following will addressed will be: The Hadoop ecosystem and products Hadoop architecture and post migration architectures to Google Cloud Assessment Data transfer options Workload migrations, namely: Spark to Dataproc Serverless, Apache Oozie to Composer (Airflow), and Hive to BigQuery Security and governance Logging and Monitoring
Migration from AWS EC2 to Google Cloud Compute Engine using Migrate to Virtual Machines (v5) using demo VM(s). It provides a proof-of-concept that walks you through the process of replicating a VM to doing test cutover and final cutover of the VM.
Migration from on-premises VMware to Google Cloud Compute Engine using Migrate to Virtual Machines (v5) using demo VM(s). It provides a proof-of-concept that walks you through the process of replicating a VM to doing test cutover and final cutover of the VM.
Welcome to the course focusing on the Migration from Pivotal Cloud Foundry to Google Cloud. This program offers a practical demonstration that guides you through the step-by-step process of transitioning applications seamlessly between these two platforms. Throughout this course, you'll engage in hands-on exercises and demos, providing a proof-of-concept journey. This course provides insights into Pivotal Cloud Foundry and Tanzu Kubernetes Grid (TKG), and their roles in cloud infrastructure. It includes hands-on sessions for installing Tanzu CLI. You'll also learn to deploy management clusters efficiently, organize cloud resources, and create workload clusters. Additionally, you will perform a workload migration from Tanzu Kubernetes Grid to Google Kubernetes Engine (GKE) and containerize an applications on Google Cloud.
Migration from Azure to Google Cloud Compute Engine using Migrate to Virtual Machines (v5) using demo VM(s). It provides a proof-of-concept that walks you through the process of replicating a VM to doing test cutover and final cutover of the VM.
Outline the key steps in publishing an API to deliver selective company information to applications created by external developers.
In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.
大家都知道,機器學習是發展最快的科技領域之一, 而 Google Cloud Platform 在這方面功不可沒。 GCP 提供多種 API,凡是與機器學習相關的任務,幾乎都能處理。您將在本入門課程的 實驗室,實際演練機器學習技術 在語言處理方面的應用,學會如何從文中擷取實體資訊、 執行情緒和語法分析,並使用 Speech-to-Text API 轉錄語音。
大數據、機器學習和人工智慧 (AI) 是時下熱門的 電腦相關話題,但這些領域相當專業,就算想要入門 也難以取得教材或資料。幸好,Google Cloud 提供了此領域的多種服務,而且容易使用。 參加這堂入門課程,您就能踏出第一步, 開始學習運用 BigQuery、Cloud Speech API 以及 Video Intelligence 等工具。
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
This skill badge course is designed to offer hands-on experience through labs, enabling participants to master Document AI for document processing and extraction tasks. By the end of the course, participants will be proficient in creating and testing Document AI processors, customizing document extraction using Document AI Workbench, and building custom processors to tackle real-world document processing challenges.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with building a Custom Doc Extractor using the Google Cloud AI solution. The following will be addressed: Service: Document AI Task: Extract fields Processors: Custom Document Extractor and Document Splitter Prediction: Using Endpoint to programmatically extract fields
This course explores the quality assurance best practices and the tools available in Conversational Agents to ensure production grade quality during Conversational Agent development, as well as the key tenets for the creation of a robust end to end deployment lifecycle. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
This course explores the fundamentals of the feedback loop process for Conversational Agent development and introduces the native capabilities within Conversational Agents that support it. You will also learn about advanced methods and tools to monitor the performance of your Conversational agent in Conversational Agents.
In this course, you will learn the important role that different types of webhooks play in Conversational Agents development, and how to effectively integrate them into your routine configuration of a Conversational Agent. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
Discover flows in Conversational Agents and learn how to build deterministic chat and voice experiences with language models. Explore key concepts like drivers, intents, and entities, and how to use them to create conversational agents.
This course explores the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
This course explores the best practices, methods and tools to programmatically lead CCAI virtual agent delivery. It includes a high level overview of the end to end journey for building and deploying a virtual agent, as well as the core tenets to create a strong delivery culture. Additionally, this course covers the best practices for workflow management, defect tracking, release management and post-release support to ensure optimal virtual agent performance.
Welcome to "CCAI Operations and Implementation", the fourth course in the "Customer Experiences with Contact Center AI" series. In this course, learn some best practices for integrating conversational solutions with your existing contact center software, establishing a framework for human agent assistance, and implementing solutions securely and at scale. In this course, you'll be introduced to Agent Assist and the technology it uses so you can delight your customers with the efficiencies and accuracy of services provided when customers require human agents, connectivity protocols, APIs, and platforms which you can use to create an integration between your virtual agent and the services already established for your business, Dialogflow's Environment Management tool for deployment of different versions of your virtual agent for various purposes, compliance measures and regulations you should be aware of when bringing your virtual agent to production, and you'll be given tips from virtua…
Welcome to "Virtual Agent Development in Dialogflow CX for Citizen Devs", the second course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to adding voice (telephony) as a communication channel to your virtual agent conversations using Dialogflow CX.
Welcome to "Virtual Agent Development in Dialogflow CX for Software Devs", the third course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop more customized customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to more advanced and customized handling for virtual agent conversations that need to look up and convey dynamic data, and methods available to you for testing your virtual agent and logs which can be useful for understanding issues that arise. This is an intermediate course, intended for learners with the following type of role: Software developers: Codes computer software in a programming language (e.g., C++, Python, Javascript) and often using an SDK/API.
Welcome to "CCAI Conversational Design Fundamentals", the first course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to design customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will be introduced to CCAI and its three pillars (Dialogflow, Agent Assist, and Insights), and the concepts behind conversational experiences and how the study of them influences the design of your virtual agent. After taking this course you will be prepared to take your virtual agent design to the next level of intelligent conversation.
This course educates partners on key concepts of Google’s Migrate to Containers. It will cover planning, workload fitness for conversion, deployment with a processing cluster, and the migration process.
In this course, you will learn about advanced methods and tools to monitor the performance of your Conversational agent in Conversational Agents. Please note Dialogflow CX was recently renamed to Conversational Agents and this course is in the process of being updated to reflect the new product name for Dialogflow CX.
This course explores advanced technical considerations to optimize Webhook connectivity for comprehensive, end-to-end, Conversational Agent self-service experiences. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
This course will equip you with the tools to develop complex conversational experiences in Conversational Agents capable of identifying the user intent and routing it to the right self service flow.
Explore the Generative AI features for Conversational Agents and how to incorporate them into stateful Flows. Discover the possibilities with Generators, Generative Fallback, and Data Stores, as well as best practices and security settings for using these features.
This course will equip you with the tools to develop complex conversational experiences in Conversational Agents capable of identifying the user intent and routing it to the right self service flow. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
Explore Playbooks and their implementation of the ReAct pattern for building Conversational Agents. You will learn how to construct a Playbook, set up goals and instructions to build a chatbot in natural language, and learn to test and deploy your solution.
Learn about building conversational AI voice and chat integrations, including how telephony systems can connect with Google to enable phone-based interactions within the Conversational AI ecosystem. Explore key topics such as the differences between chat and voice conversations, the writing process for creating conversation scripts, and the beginning of the interrogative series and closing sequence.
Learn which Mandiant products directly enhance or augment capabilities provided by Chronicle SIEM and SOAR and how those products integrate into our workflow.
This course will provide you with an overview of SIEM technology to set the stage for the differentiation and expansion of capabilities that Chronicle SIEM provides.
This course will familiarize you with the core functionality of Chronicle, including the user interface, connections, and settings.
In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.
Networking is a principle theme of cloud computing. It’s the underlying structure of Google Cloud, and it’s what connects all your resources and services to one another. This course will cover essential Google Cloud networking services and will give you hands-on practice with specialized tools for developing mature networks. From learning the ins-and-outs of VPCs, to creating enterprise-grade load balancers, Automate Deployment and Manage Traffic on a Google Cloud Network will give you the practical experience needed so you can start building robust networks right away.
Google Cloud 的服務在安全上絕不妥協, 因此開發了專用工具,確保所有專案安全無虞, 使用者也能妥善管理身分識別機制。在這堂入門課程中,您會實際使用 Google Cloud 的 Identity and Access Management (IAM) 服務, 練習管理使用者和虛擬機器帳戶。您將 佈建虛擬私有雲和 VPN 來熟悉網路安全功能,並瞭解有哪些工具 可防範資安威脅和資料遺失。
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This third course covers cloud automation and management tools and building secure networks.
只要修完「在 Google Cloud 設定應用程式開發環境」課程,就能獲得技能徽章。 在本課程中,您將學會如何使用以下技術的基本功能,建構和連結以儲存空間為中心的雲端基礎架構:Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This first course provides an overview of cloud computing, ways to use Google Cloud, and different compute options.
This workload aims to upskill Google Cloud partners to deploy and manage Google Backup and Disaster Recovery (BDR). The following will be addressed: the core components and business value of Google BDR, the prerequisites before installing Google BDR, the initial deployment of Google BDR, creating and configuring components of a Backup Plan, the components of a Backup Plan, discovering VMware and Compute Engine VMs, and protecting, backing up, and restoring VMs.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
In this course, you will learn about the various services Google Cloud offers for modernizing retail applications and infrastructure. Through a series of lecture content and hands-on labs, you will gain practical experience deploying cutting-edge retail and ecommerce solutions on Google Cloud.
This course equips full-stack mobile and web developers with the skills to integrate generative AI features into their applications using LangChain. You'll learn how to leverage LangChain’s capabilities for backend flows and seamless model execution, all within the familiar environment of Python. The course guides you through the entire process, from prototyping to production, ensuring a smooth journey in building next-generation AI-powered applications.
Learn how Gemini can revolutionize your ability to develop applications! This course helps developers go beyond the basics and learn how to integrate Gemini into their workflows.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
完成 使用 Gemini 多模態功能和多模態 RAG 檢查複合型文件 技能徽章中階課程,即可證明您具備下列技能: 透過 Gemini 多模態功能,使用多模態提示從文字和影像資料擷取資訊、生成影片說明,以及擷取影片以外的額外資訊; 透過 Gemini 的多模態檢索增強生成 (RAG) 功能,為含有文字和圖片的文件建構中繼資料、取得所有相關文字分塊,以及顯示引用資料。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成本課程及結業評量挑戰研究室,即可取得技能徽章,並與親友分享。
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.
This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.
This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。
完成「在 Vertex AI 使用 Gemini API 探索生成式 AI」技能徽章中階課程,即可證明自己具備下列技能: 可運用 Gemini API 生成文字、分析圖片和影片來強化內容創作能力,還能使用函式呼叫技巧。 本課程將帶您瞭解如何善用進階的 Gemini 技術、使用多模態內容生成功能,並提升 AI 專案的潛力。
完成 使用 Gemini 和 Streamlit 開發生成式 AI 應用程式 技能徽章中階課程,即可證明您具備下列技能: 生成文字、透過 Python SDK 和 Gemini API 呼叫函式,以及運用 Cloud Run 部署 Streamlit 應用程式。 您將瞭解如何以不同方式透過提示請 Gemini 生成文字、使用 Cloud Shell 測試及疊代 Streamlit 應用程式,隨後封裝成 Docker 容器並在 Cloud Run 中部署。
In this course you will learn how Agent Assist can enhance the productivity of human agents while interacting with customers through the chat channel.
(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.
This course is for Partner sellers and technical pre-sales engineers to gain a comprehensive understanding of Google Cloud's cutting-edge Generative AI capabilities, learn to identify high-impact use cases, and develop the skills to demonstrate and integrate these technologies seamlessly into client solutions and operations.
This course is for Partner sellers and technical pre-sales engineers to gain a comprehensive understanding of Google Cloud's cutting-edge Generative AI capabilities and learn to identify high-impact use cases.
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助您透過 Google Cloud 使用 Google 產品和服務,開發、測試、部署及管理應用程式。有了 Gemini 的協助,您會學到如何開發和建構網頁應用程式、修正應用程式中的錯誤、開發測試及查詢資料。在實作研究室中,您也會體驗到 Gemini 如何改良軟體開發生命週期 (SDLC)。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助工程師透過 Google Cloud 管理基礎架構。您將學到如何透過提示讓 Gemini 尋找和瞭解應用程式記錄檔、建立 GKE 叢集,以及研究如何打造建構環境。在實作研究室中,您也會瞭解 Gemini 如何改良開發運作的工作流程。 Duet AI 已更名為 Gemini,是我們新一代的模型。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助網路工程師建立、更新及維護虛擬私有雲網路。您將瞭解如何透過提示讓 Gemini 為網路工作提供指引,獲得比搜尋結果更具體的資訊。在實作研究室中,您也會體驗到 Gemini 如何簡化 Google Cloud 虛擬私有雲網路的作業。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助您透過 Google Cloud 保護雲端環境和資源。您將學到如何將工作負載範例部署到 Google Cloud 中的環境,以及運用 Gemini 找出並修復安全性設定錯誤。在實作研究室中,您也會體驗到 Gemini 如何改良雲端安全防護機制。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助分析客戶資料及預測產品銷售情形。您也會學習如何在 BigQuery 中使用客戶資料識別、分類及開發新客戶。透過使用實作研究室,您可以體驗 Gemini 如何改良資料分析和機器學習工作流程。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
完成 透過 Vertex AI 建構及部署機器學習解決方案 課程,即可瞭解如何使用 Google Cloud 的 Vertex AI 平台、AutoML 和自訂訓練服務, 訓練、評估、調整、解釋及部署機器學習模型。 這個技能徽章課程適合專業數據資料學家和機器學習 工程師,完成即可取得中階技能徽章。技能 徽章是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境應用相關知識。完成這個技能徽章課程 和結業評量挑戰實驗室,就能獲得數位徽章, 並與親友分享。
This skill badge course is designed to offer hands-on experience through labs, enabling participants to migrate applications to the cloud using a "Rehost" strategy. Participants will learn essential tasks involved in migrating both frontend (.Net application) and backend (MySQL database) components to existing virtual machines. Through guided and challenge labs, participants will validate successful migrations, reinforcing their understanding of cloud application modernization concepts.
This learning path aims to upskill Google Cloud partners to perform the specific tasks associated with the priority workload. Learners will discover the specific tasks in rehosting applications from on-premises to Google Cloud. It also aims to re-platform applications to run in GKE. Learners will perform the tasks of Migrating MySQL, Angular, and .NET applications from their on-premises machines to Google Cloud VM instances. Sample code will be used during the migration. Learners will complete a challenge lab that focuses on the critical steps in a rehosting exercise - copying over code for the back-end, front-end, and middle-tier applications and validating that the applications have been migrated correctly. Learners will also complete a challenge lab that focuses on the critical steps in a re-platforming exercise - creating back-end, front-end, and middle-tier Docker images, deploying the same in the GKE cluster, and validating that the application has been deployed correctly.
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助管理員在 Google Cloud 佈建基礎架構。您將瞭解如何透過提示讓 Gemini 解釋基礎架構、部署 GKE 叢集,以及更新既有的基礎架構。在實作研究室中,您也會體驗到 Gemini 如何改良 GKE 的部署工作流程。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助開發人員透過 Google Cloud 建構應用程式。您將瞭解如何透過提示讓 Gemini 為您解釋程式碼內容、推薦 Google Cloud 服務,以及生成應用程式的程式碼。在實作研究室中,您也會體驗到 Gemini 如何改良應用程式的開發工作流程。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
This on-demand course provides partners the skills required to design, deploy, and monitor Vertail AI Search for Commerce solutions including retail search and recommendation AI for enterprise customers.
This skill badge course is designed to offer hands-on experience through labs, guiding participants in gaining practical expertise in modernizing Java applications on the Google Cloud.
This course aims to upskill Google Cloud partners to perform specific tasks in rehosting applications from on-premise to Google Cloud. It also aims to re-platform applications to run in GKE. Learners will perform the tasks of Migrating MySQL, Angular, and Java applications from their on-premise machines to Google Cloud VM instances. Sample code will be used during the migration.
This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.
(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.
In this course you will learn how Conversational AI Agent Assist can help distill complex customer interactions into concise and clear summaries. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
In this course you will learn how Agent Assist can enhance the productivity of human agents while interacting with customers through the voice channel, as well as the options available for integration with other platforms in the Conversational AI ecosystem.
Gemini 版 Google Workspace 是一項外掛程式,可讓使用者存取生成式 AI 功能。本課程會使用影片、實作活動和練習範例,深入介紹 Gemini 版 Google Meet 的功能。您會學到如何透過 Gemini 生成背景圖片、提升視訊品質及翻譯字幕。本課程結束後,您將具備 Gemini 版 Google Meet 的知識及技能,安心運用這項工具提高視訊會議的效率。
Gemini 版 Google Workspace 是一項外掛程式,可讓客戶在 Google Workspace 使用生成式 AI 功能。這堂迷你課程會介紹 Gemini 的主要功能,並說明如何在 Google 簡報善用這些功能,提高生產力和效率。
安裝 Gemini 版 Google Workspace 外掛程式後,客戶就能在 Google Workspace 使用生成式 AI 功能。這堂迷你課程會介紹 Gemini 的主要功能,並說明如何在 Google 試算表善用這些功能,提高生產力和效率。
使用者將能透過 Gemini 版 Google Workspace 外掛程式運用生成式 AI 功能。本課程會使用影片、實作活動和練習範例,深入介紹 Gemini 版 Google 文件的功能。您將學到如何透過 Gemini 使用提示生成撰寫內容、編輯寫好的文字,以提升整體工作效率。本課程結束後,您將具備 Gemini 版 Google 文件的知識及技能,可自信地運用這項工具提升寫作品質。
Gemini 版 Google Workspace 是一項外掛程式,可讓客戶在 Google Workspace 使用生成式 AI 功能。這堂迷你課程會介紹 Gemini 的主要功能,並說明如何在 Gmail 善用這些功能,提高生產力和效率。
客戶能透過 Gemini 版 Google Workspace 外掛程式在 Google Workspace 使用生成式 AI 功能。本學習路徑會介紹 Gemini 的主要功能,並說明如何在 Google Workspace 善用這些功能,提高生產力和效率。
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.
In this course, you'll learn to develop generative agents that answer questions using websites, documents, or structured data. You will explore Vertex AI Applications and understand the advantages of data store agents, including their scalability and security. You'll learn about different data store types and also discover how to connect data stores to agents and add personalization for enhanced responses. Finally, you'll gain insights into common search configurations and troubleshooting techniques.
This is an introductory course to all solutions in the Conversational AI portfolio and the Gen AI features that are available to transform them. The course also explores the business case around Conversational AI, and the use cases and user personas addressed by the solution. Please note Dialogflow CX was recently renamed to Conversational Agents and this course is in the process of being updated to reflect the new product name for Dialogflow CX.
In this course you will learn the key architectural considerations that need to be taken into account when designing for the implementation of Conversational AI solutions. Please note Dialogflow CX was recently renamed to Conversational Agents and CCAI Insights was renamed to Conversational Insights.
This is a introductory course to all solutions in the Contact Centre AI (CCAI) portfolio and the Generative AI features that are poised to transform them. The course also explores the CCAI go to market and engagement model, the business case around CCAI, as well as the use cases and user personas addressed by the solution.
In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of rehosting Oracle Workloads on Google Cloud.
This course focuses on modernizing applications using OpenShift on Google Cloud. Throughout this course, you'll gain the skills necessary to describe and understand OpenShift and successfully re-platform it to Google Cloud.
This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.
The Google Cloud Rapid Migration & Modernization Program (RaMP) is a holistic, end-to-end migration/modernization program that helps customers & partners leverage expertise and best practices, lower risk, control costs, and simplify a customer's path to cloud success. This course will give an overview of the program and some of the tools and best practices available to support customer migrations & modernizations.
這堂課程會介紹 AI 搜尋技術、工具和應用程式。主題涵蓋使用向量嵌入執行語意搜尋;結合語意和關鍵字做法的混合型搜尋機制;以及運用檢索增強生成 (RAG) 技術建構有基準的 AI 代理,盡可能減少 AI 幻覺。您可以實際使用 Vertex AI Vector Search,打造智慧型搜尋引擎。
This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.
This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.
This course enables system integrators and partners to understand the principles of automated migrations, plan legacy system migrations to Google Cloud leveraging G4 Platform, and execute a trial code conversion.
As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
This content is deprecated. Please see the latest version of the course, here.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.
探索生成式 AI - Vertex AI 課程包含一系列實驗室,幫助您瞭解 如何在 Google Cloud 使用生成式 AI。透過實驗室,您將瞭解 如何使用 Vertex AI PaLM API 系列模型,包括 text-bison、chat-bison、 和 textembedding-gecko。您也會瞭解提示設計、最佳做法、 以及這些模型如何用於構思、文字分類、文字擷取、文字 摘要等。您也會瞭解如何透過 Vertex AI 自訂訓練功能調整基礎模型, 並將模型部署至 Vertex AI 端點。
隨著企業持續擴大使用人工智慧和機器學習,以負責任的方式發展相關技術也日益重要。對許多企業來說,談論負責任的 AI 技術可能不難,如何付諸實行才是真正的挑戰。如要瞭解如何在機構中導入負責任的 AI 技術,本課程絕對能助您一臂之力。 您可以從中瞭解 Google Cloud 目前採取的策略、最佳做法和經驗談,協助貴機構奠定良好基礎,實踐負責任的 AI 技術。
本課程會介紹 Vertex AI Studio。您可以運用這項工具和生成式 AI 模型互動、根據商業構想設計原型,並投入到正式環境。透過身歷其境的應用實例、有趣的課程及實作實驗室,您將能探索從提示到正式環境的生命週期,同時學習如何將 Vertex AI Studio 運用在多模態版 Gemini 應用程式、提示設計、提示工程和模型調整。這個課程的目標是讓您能運用 Vertex AI Studio,在專案中發揮生成式 AI 的潛能。
本課程說明如何使用深度學習來建立圖像說明生成模型。您將學習圖像說明生成模型的各個不同組成部分,例如編碼器和解碼器,以及如何訓練和評估模型。在本課程結束時,您將能建立自己的圖像說明生成模型,並使用模型產生圖像說明文字。
這堂課程將說明變換器架構,以及基於變換器的雙向編碼器表示技術 (BERT) 模型,同時帶您瞭解變換器架構的主要組成 (如自我注意力機制) 和如何用架構建立 BERT 模型。此外,也會介紹 BERT 適用的各種任務,像是文字分類、問題回答和自然語言推論。課程預計約 45 分鐘。
本課程概要說明解碼器與編碼器的架構,這種強大且常見的機器學習架構適用於序列對序列的任務,例如機器翻譯、文字摘要和回答問題。您將認識編碼器與解碼器架構的主要元件,並瞭解如何訓練及提供這些模型。在對應的研究室逐步操作說明中,您將學習如何從頭開始使用 TensorFlow 寫程式,導入簡單的編碼器與解碼器架構來產生詩詞。
本課程將介紹注意力機制,說明這項強大技術如何讓類神經網路專注於輸入序列的特定部分。此外,也將解釋注意力的運作方式,以及如何使用注意力來提高各種機器學習任務的成效,包括機器翻譯、文字摘要和回答問題。
本課程將介紹擴散模型,這是一種機器學習模型,近期在圖像生成領域展現亮眼潛力。概念源自物理學,尤其深受熱力學影響。過去幾年來,在學術界和業界都是炙手可熱的焦點。在 Google Cloud 中,擴散模型是許多先進圖像生成模型和工具的基礎。課程將介紹擴散模型背後的理論,並說明如何在 Vertex AI 上訓練和部署這些模型。
完成「Introduction to Generative AI」、「Introduction to Large Language Models」和「Introduction to Responsible AI」課程,即可獲得技能徽章。通過最終測驗,就能展現您對生成式 AI 基本概念的掌握程度。 「技能徽章」是 Google Cloud 核發的數位徽章,用於表彰您對 Google Cloud 產品和服務的相關知識。您可以將技能徽章公布在社群媒體的個人資料中,向其他人分享您的成果。
這個入門微學習課程主要介紹「負責任的 AI 技術」和其重要性,以及 Google 如何在自家產品中導入這項技術。本課程也會說明 Google 的 7 個 AI 開發原則。
這是一堂入門級的微學習課程,旨在探討大型語言模型 (LLM) 的定義和用途,並說明如何調整提示來提高 LLM 成效。此外,也會介紹多項 Google 工具,協助您自行開發生成式 AI 應用程式。
這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。