Hector Garcia Miramontes
Учасник із 2024
Срібна ліга
Кількість балів: 6770
Учасник із 2024
What is cloud technology or data science and what’s all the hype about? More importantly, what can it do for you, your team, and your business? If you want to learn about cloud technology so you can excel in your role, help build the future of your business and thrive in the cloud era, then the Business Transformation with Google Cloud course is for you. Through this interactive training, you’ll learn about core cloud business drivers—specifically Google’s cloud—and gain the knowledge/skills to determine if business transformation is right for you and your team, and build short and long-term projects using the “superpowers” of cloud accordingly. You’ll also find several templates, guides, and resource links through the supplementary student workbook to help you build a custom briefing document to share with your leadership, technical teams or partners.
Це ознайомлювальний курс мікронавчання, який має пояснити, що таке генеративний штучний інтелект, як він використовується й чим відрізняється від традиційних методів машинного навчання. Він також охоплює інструменти Google, які допоможуть вам створювати власні додатки на основі генеративного штучногоінтелекту.
This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.