Hector Garcia Miramontes
Membro dal giorno 2024
Campionato Argento
6770 punti
Membro dal giorno 2024
What is cloud technology or data science and what’s all the hype about? More importantly, what can it do for you, your team, and your business? If you want to learn about cloud technology so you can excel in your role, help build the future of your business and thrive in the cloud era, then the Business Transformation with Google Cloud course is for you. Through this interactive training, you’ll learn about core cloud business drivers—specifically Google’s cloud—and gain the knowledge/skills to determine if business transformation is right for you and your team, and build short and long-term projects using the “superpowers” of cloud accordingly. You’ll also find several templates, guides, and resource links through the supplementary student workbook to help you build a custom briefing document to share with your leadership, technical teams or partners.
Questo è un corso di microlearning di livello introduttivo volto a spiegare cos'è l'AI generativa, come viene utilizzata e in che modo differisce dai tradizionali metodi di machine learning. Descrive inoltre gli strumenti Google che possono aiutarti a sviluppare le tue app Gen AI.
Questo corso presenta le offerte di intelligenza artificiale (AI) e machine learning (ML) su Google Cloud per la creazione di progetti di AI predittiva e generativa. Esplora le tecnologie, i prodotti e gli strumenti disponibili durante tutto il ciclo di vita data-to-AI, includendo le basi, lo sviluppo e le soluzioni di AI. Ha lo scopo di aiutare data scientist, sviluppatori di AI e ML engineer a migliorare le proprie abilità e conoscenze attraverso attività di apprendimento coinvolgenti ed esercizi pratici.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.