Leandro Santos
Date d'abonnement : 2023
Ligue de Diamant
249358 points
Date d'abonnement : 2023
La sécurité est un aspect primordial des services Google Cloud. C'est pourquoi Google Cloud a développé des outils spécifiques pour garantir la sécurité de vos projets et le bon fonctionnement de l'authentification. Dans ce cours d'introduction, vous allez pouvoir vous familiariser avec le service Identity and Access Management (IAM) de Google Cloud, la référence en termes de gestion des comptes utilisateur et de machines virtuelles. Vous développerez vos compétences en sécurité réseau en provisionnant des VPC et des VPN, et vous découvrirez les outils existants pour lutter contre les menaces de sécurité et la perte de données.
This course teaches you some basic Google Kubernetes Engine (GKE) networking. With written lectures, hands-on lab exercises, and quizzes, you learn how to set up services, facilitate communication, and configure secure access to your GKE applications.
Complete the Evaluate Gen AI model and agent performance skill badge to demonstrate your ability to use the Gen AI evaluation service. You will evaluate models to select the best model for a given task, compare models against each other and evaluate the performance of agents. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Evaluation is important at every step of your Gen AI development process. In this course you will learn how to evaluate gen AI agents built using agent frameworks.
This lab tests your ability to develop a real-world Generative AI Q&A solution using a RAG framework. You will use Firestore as a vector database and deploy a Flask app as a user interface to query a food safety knowledge base.
Learn how to build your own Retrieval-Augmented Generation (RAG) solutions for greater control and flexibility than out-of-the-box implementations. Create a custom RAG solution using Vertex AI APIs, vector stores, and the LangChain framework.
Ce cours présente une solution de génération augmentée par récupération (RAG) dans BigQuery permettant de réduire les hallucinations de l'IA. Il décrit un workflow RAG qui couvre la création d'embeddings, la recherche dans un espace vectoriel et la génération de réponses améliorées. Il explique aussi les raisons conceptuelles derrière ces étapes et leur implémentation pratique avec BigQuery. À la fin du cours, les participants seront à même de créer un pipeline de RAG à l'aide de BigQuery et de modèles d'IA générative tels que Gemini, ainsi que des modèles d'embeddings pour traiter leurs propres cas d'hallucinations de l'IA.
Complete the Edit images with Imagen skill badge to demonstrate your skills with Imagen's mask modes and editing modes to edit images according to certain prompts. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Generate engaging media with Google's foundation models for media. Create new images with Imagen, or edit your existing photos by adding details or outpainting to create a wider view. Replace backgrounds to put your products in new scenes. And learn the basics of generating videos with Veo!
Complete the Develop solutions using Model Garden APIs skill badge to demonstrate your ability to use Vertex AI Model Garden features when building gen AI solutions. You will use partner APIs such as Anthropic Claude ands Meta Llama, deploy and programatically access foundation models like Gemma and Stable Diffusion XL and access Vertex AI Endpoints. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Complete the Extend Gemini with controlled generation and Tool use skill badge to demonstrate your proficiency in connecting models to external tools and APIs. This allows models to augment their knowledge, extend their capabilities and interact with external systems to take actions such as sending an email. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!"
Model tuning is an effective way to customize large models to your tasks. It's a key step to improve the model's quality and efficiency. Model tuning provides benefits such as higher quality results for your specific tasks and increased model robustness. You learn some of the tuning options available in Vertex AI and when to use them.
Model Garden is a model library that helps you discover, test, and deploy models from Google and Google partners. Learn how to explore the available models and select the right ones for your use case. And how to deploy and interact with Model Garden models through the Google Cloud console and APIs.
An LLM-based application can process language in a way that resembles thought. But if you want to extend its capabilities to take actions by running other functions you have coded, you will need to use function calling. This can also be referred to as tool use. Additionally, you can give a model the ability to search Google or search a data store of documents to ground its responses. In other words, to base its answers on that information. In this course, you’ll explore these concepts.
Unlock the power of generative AI to create intelligent, automated agents. After completing this course, you'll be equipped to develop a data store agent that can instantly answer complex questions by automatically extracting and synthesizing information from your websites, documents, or structured data. Say goodbye to static FAQs—your new agent will provide dynamic, accurate answers and even surface the original source URLs, all with a simple and rapid setup.
Earn a skill badge by completing the Protect Cloud Traffic with Chrome Enterprise Premium Security skill badge course, where you learn how to leverage Chrome Enterprise Premium to provide secure access to critical apps and services, improve your security posture with a modern Zero Trust platform, securely provide access to resources using identity and context-aware access control, and support hybrid cloud workloads using Client Connector.
Terminez le cours intermédiaire Atténuer les menaces et les failles avec Security Command Center pour recevoir un badge démontrant vos compétences dans les domaines suivants : prévenir et gérer les menaces environnementales, identifier et atténuer les failles des applications, et répondre aux anomalies de sécurité.
Apprenez à sécuriser vos déploiements sur Google Cloud, y compris : utiliser la gestion des bots de Cloud Armor pour limiter les risques liés aux bots et contrôler les accès émanant de clients automatisés ; utiliser les listes de blocage de Cloud Armor pour restreindre ou autoriser l'accès à votre équilibreur de charge HTTP(S) à la périphérie de Google Cloud ; appliquer des règles de sécurité Cloud Armor pour limiter l'accès aux objets mis en cache dans Cloud CDN et Google Cloud Storage ; et atténuer les failles courantes à l'aide des règles WAF de Cloud Armor.
Dans ce cours, vous allez acquérir les compétences de base pour implémenter des pratiques DevSecOps sécurisées et efficaces sur Google Cloud. Vous apprendrez à sécuriser votre pipeline de développement avec des services Google Cloud tels qu'Artifact Registry, Cloud Build, Cloud Deploy et l'autorisation binaire. Vous pourrez ainsi créer, tester et déployer des applications conteneurisées avec des contrôles de sécurité tout au long du pipeline CI/CD.
Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.
Bienvenue dans le sixième cours de notre série "Networking in Google Cloud", consacré au cloud hybride et multicloud. Le premier module vous présentera différentes options de connectivité cloud, avec une analyse plus approfondie de Cloud Interconnect explorant ses différents types et fonctionnalités. Dans le deuxième module, il sera question de Cloud VPN, de son implémentation, des topologies de VPN haute disponibilité, ainsi que de l'outil Network Connectivity Center (NCC) qui permet d'optimiser la gestion. À la fin du cours, vous serez en mesure d'expliquer les différentes options de connectivité disponibles pour étendre à Google Cloud vos réseaux sur site ou dans d'autres clouds, et analyser l'adéquation de différents services Google Cloud de connectivité hybride et multicloud avec des cas d'utilisation spécifiques. C'est parti !
Obtenez le badge de compétence intermédiaire Explorer l'IA générative avec l'API Gemini dans Vertex AI pour démontrer vos compétences dans les domaines suivants : la génération de texte, l'analyse d'images et de vidéos pour améliorer la création de contenu, et l'application de techniques d'appel de fonction dans l'API Gemini. Découvrez comment exploiter des techniques Gemini avancées et étendre les capacités de vos projets optimisés par l'IA, et explorez le fonctionnement de la génération de contenu multimodal.
Ce cours développe les concepts abordés dans le cours "Networking in Google Cloud: Fundamentals". À travers des présentations, des démonstrations et des ateliers, les participants découvrent et implémentent Cloud Load Balancing.
Bienvenue dans le quatrième cours de la série "Mise en réseau dans Google Cloud". Dans ce cours, vous allez découvrir en détail les services permettant de protéger votre infrastructure réseau Google Cloud. Le premier module "Protection contre les attaques par déni de service distribué (DDoS)" explique comment renforcer la protection de votre réseau contre les attaques par déni de service distribué (DDoS) afin de garantir une disponibilité ininterrompue de vos services. Dans le deuxième module "Contrôler l'accès aux réseaux VPC", vous découvrirez le contrôle des accès aux réseaux, qui vous permet de définir des autorisations afin de déterminer qui peut accéder à vos ressources et de quelle manière. Enfin, dans le troisième module "Surveillance et analyse avancées de la sécurité", nous verrons comment détecter les menaces potentielles et y répondre de manière proactive, en assurant la sécurité et la résilience de votre environnement Google Cloud. À la fin de ce cours, vous aurez acquis u…
Bienvenue dans le troisième cours de la série "Networking in Google Cloud", intitulé "Network Architecture". Dans ce cours, vous allez explorer les principes fondamentaux de la conception d'architectures réseau efficaces et évolutives dans Google Cloud. Dans le module 1 "Présentation de l'architecture réseau", nous vous présenterons d'abord les principaux composants et concepts de l'architecture réseau, y compris les sous-réseaux, les routes, les pare-feu et l'équilibrage de charge. Dans le module 2 "Topologies de réseaux", nous aborderons ensuite diverses topologies de réseaux couramment utilisées dans Google Cloud, et examinerons leurs points forts et leurs points faibles.
Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud Architect Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.
Cloud Storage, Cloud Functions et Cloud Pub/Sub sont tous des services Google Cloud Platform qui peuvent être utilisés pour stocker, traiter et gérer des données. Ces trois services peuvent être utilisés ensemble pour créer différentes applications basées sur les données. Dans ce cours, vous allez utiliser Cloud Storage pour stocker des images, Cloud Functions pour les traiter et Cloud Pub/Sub pour les envoyer à une autre application.
Complete the introductory Monitor and Manage Google Cloud Resources skill badge to demonstrate skills in the following: granting and revoking IAM permissions; installing monitoring and logging agents; creating, deploying, and testing an event-driven Cloud Run function.
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.
Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud Security Engineer Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.
Ce cours s'adresse aux analystes de données qui souhaitent apprendre à utiliser BigQuery pour leurs besoins d'analyse de données. À travers un ensemble de vidéos, d'ateliers et de démonstrations, nous aborderons différents sujets pour expliquer comment ingérer, transformer et interroger vos données dans BigQuery afin de dégager des insights qui contribuent à la prise de décisions commerciales.
This content is deprecated. Please see the latest version of the course, here.
Obtenez un badge de compétence en effectuant le cours Déployer et gérer Apigee X dans laquelle vous découvrirez l'architecture Apigee X. Vous y apprendrez également à provisionner une organisation Apigee X dans un projet Google Cloud, à gérer Apigee X à l'aide de l'API et de l'interface utilisateur Apigee, et à utiliser de Cloud Armor et les règles Apigee de protection contre les menaces pour protéger vos API.
Terminez le cours intermédiaire Optimiser les coûts pour Google Kubernetes Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et la gestion de clusters mutualisés, la surveillance de l'utilisation des ressources par espace de noms, la configuration de l'autoscaling des pods et des clusters pour accroître l'efficacité, la configuration de l'équilibrage de charge pour distribuer les ressources de façon optimale et l'implémentation des vérifications d'activité et d'aptitude pour garantir l'intégrité ainsi que la rentabilité des applications. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Bienvenue dans la seconde partie du cours "Observabilité dans Google Cloud". Ce cours présente les outils de gestion des performances des applications, y compris Error Reporting, Cloud Trace et Cloud Profiler.
Suivez le cours Configurer un réseau Google Cloud et obtenez un badge de compétence. Vous allez apprendre à effectuer des tâches élémentaires de gestion de réseaux sur Google Cloud Platform : créer un réseau personnalisé, ajouter des règles de pare-feu de sous-réseau, puis créer des VM et tester la latence lorsqu'elles communiquent entre elles.
Le cours "Concevoir une architecture avec Google Kubernetes Engine : charges de travail" vous fera découvrir de manière très complète le développement d'applications cloud natives. Tout au long de votre formation, vous étudierez les opérations Kubernetes, la gestion des déploiements, la mise en réseau GKE et le stockage persistant. Il s'agit du premier cours de la série "Concevoir une architecture avec Google Kubernetes Engine". Après l'avoir terminé, inscrivez-vous au cours "Concevoir une architecture avec Google Kubernetes Engine : production".
Suivez le cours Développer votre réseau Google Cloud et obtenez un badge de compétence. Dans ce cours, vous avez appris plusieurs façons de déployer et de surveiller des applications. Pour cela, vous avez vu comment parcourir les rôles IAM et ajouter/supprimer l'accès au projet, créer des réseaux VPC, déployer et surveiller des VM Compute Engine, rédiger des requêtes SQL, déployer et surveiller des VM dans Compute Engine, mais aussi comment déployer des applications à l'aide de Kubernetes avec plusieurs approches de déploiement.
This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Terminez le cours Architecture cloud : concevoir, implémenter et gérer pour recevoir un badge démontrant vos compétences dans les domaines suivants : le déploiement d'un site Web accessible publiquement à l'aide de serveurs Web Apache, la configuration d'une VM Compute Engine à l'aide de scripts de démarrage, la configuration d'une session RDP sécurisée à l'aide de règles de pare-feu et d'un hôte bastion Windows, la création d'une image Docker, son déploiement dans un cluster Kubernetes et sa mise à jour, et la création d'une instance Cloud SQL et l'importation d'une base de données MySQL. Le cours lié à ce badge de compétence est une excellente ressource pour comprendre les sujets qui seront abordés dans l'examen de certification Google Cloud Certified Professional Cloud Architect. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connais…
Complete the introductory Use APIs to Work with Cloud Storage skill badge to demonstrate skills in the following: using APIs to work with Cloud Storage resources, including the Cloud Storage API.
Obtenez un badge de compétence en suivant le cours Surveiller des environnements avec Google Cloud Managed Service pour Prometheus, pendant lequel vous apprendrez à utiliser Kubernetes Monitoring avec Google Cloud Managed Service pour Prometheus.
Earn a skill badge by completing the Create a Streaming Data Lake on Cloud Storage course, where you use Pub/Sub, Dataflow, and Cloud Storage together to create a streaming data lake on Google Cloud. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Obtenez un badge de compétence en suivant le cours App Engine : 3 applications, où vous apprendrez à utiliser App Engine avec Python, Go et PHP.
Obtenez un badge de compétence en suivant le cours Google Cloud Compute : principes de base, où vous apprendrez à utiliser des machines virtuelles (VM), des disques persistants et des serveurs Web à l'aide de Compute Engine. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que vous pourrez partager avec votre réseau.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Complete the introductory Secure BigLake Data skill badge course to demonstrate skills with IAM, BigQuery, BigLake, and Data Catalog within Dataplex to create and secure BigLake tables.
Earn a skill badge by completing the Tag and Discover BigLake Data skill badge course, where you use BigQuery, BigLake, and Data Catalog within Dataplex to create, tag, and discover BigLake tables.
Earn a skill badge by completing the Get Started with Eventarc skill badge course, where you use Eventarc to create event triggers for different resources including Pub/Sub topics and Cloud Storage buckets.
Terminez le cours d'introduction Premiers pas avec Dataplex pour démontrer vos compétences dans les domaines suivants : création d'éléments Dataplex, création de types d'aspects et application de ces aspects aux entrées dans Dataplex.
Complete the introductory Get Started with Sensitive Data Protection skill badge course to demonstrate skills in the following: using Sensitive Data Protection services (including the Cloud Data Loss Prevention API) to inspect, redact, and de-identify sensitive data in Google Cloud.
Obtenez un badge de compétence en effectuant la quête Analyse de flux dans BigQuery, où vous utiliserez Pub/Sub, Dataflow et BigQuery ensemble pour diffuser des données en flux continu pour l'analyse. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez cette quête et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Obtenez le badge de compétence Débutant en suivant le cours API Cloud Speech : 3 applications, dans lequel vous apprendrez à utiliser les outils d'API liés à la parole pour effectuer de la synthèse et de la reconnaissance vocales.
Cloud Storage, Cloud Functions, and Cloud Pub/Sub are all Google Cloud Platform services that can be used to store, process, and manage data. All three services can be used together to create a variety of data-driven applications. In this skill badge you use Cloud Storage to store images, Cloud Functions to process the images, and Cloud Pub/Sub to send the images to another application.
Obtenez un badge de compétence en suivant le cours Premiers pas avec API Gateway, dans lequel vous apprendrez à utiliser API Gateway pour déployer, sécuriser et gérer des API avec une passerelle entièrement gérée.
Si vous êtes un développeur cloud débutant et recherchez des exercices pratiques plus poussés au-delà des bases de Google Cloud, ce cours est fait pour vous. Il vous permettra d'acquérir de l'expérience pratique grâce aux ateliers qui traitent en profondeur de Cloud Storage et d'autres services applicatifs clés tels que Monitoring et Cloud Functions. Vous développerez des compétences précieuses que vous pourrez utiliser dans tous vos projets Google Cloud.
Terminez le cours d'introduction Préparer les données à utiliser pour les tableaux de bord et rapports Looker pour recevoir un badge démontrant vos compétences dans les domaines suivants : le filtrage, le tri et le croisement de données ; la fusion des résultats de différentes explorations Looker ; et l'utilisation de fonctions et d'opérateurs pour créer des tableaux de bord et des rapports Looker en vue de l'analyse et de la visualisation des données.
Terminez le cours d'introduction Dégager des insights des données BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de requêtes SQL, l'interrogation de tables publiques, le chargement d'exemples de données dans BigQuery, la résolution d'erreurs de syntaxe courantes avec l'outil de validation des requêtes de BigQuery et la création de rapports dans Looker Studio en se connectant aux données BigQuery.
Dans ce cours, vous allez explorer l'ingénierie de données sur Google Cloud, les rôles et responsabilités des ingénieurs de données, et la façon dont ces éléments se retrouvent dans les offres Google Cloud. Vous apprendrez également à relever les défis liés à l'ingénierie de données.
Earn a skill badge by completing the Develop and Secure APIs with Apigee X skill badge course, where you learn how to modernize your APIs, use service accounts and Google Authentication to securely access backend services from Apigee API proxies, productize APIs using API products and developer portals, secure APIs using features like API keys, OAuth, private variables and fault handling, integrate Apigee with Google Cloud services like Pub/Sub and Cloud Logging, and call Google Cloud APIs like the Natural Language API and the Geocoding API.
This course helps you understand how to use Chronicle to properly handle security incidents.
Ce cours est une introduction aux notebooks Vertex AI, des environnements basés sur des notebooks Jupyter qui proposent une plate-forme unifiée pour l'ensemble du workflow de machine learning, de la préparation des données jusqu'au déploiement et à la surveillance des modèles. Le cours aborde les sujets suivants : (1) Les différents types de notebooks Vertex AI et leurs fonctionnalités, et (2) comment en créer et les gérer.
Obtenez le badge de compétence intermédiaire en suivant le cours Implémenter des pipelines CI/CD sur Google Cloud, dans lequel vous apprendrez à utiliser Artifact Registry, Cloud Build et Cloud Deploy. Vous interagirez avec la console Cloud, Google Cloud CLI, Cloud Run et GKE. Vous apprendrez à créer des pipelines d'intégration continue, à stocker et sécuriser des artefacts, à rechercher des failles et à attester de la validité de versions approuvées. Vous vous entraînerez également à déployer des applications sur GKE et Cloud Run. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.
Ce cours aide les participants à créer un plan de formation pour l'examen de certification afin de devenir ingénieur professionnel en machine learning (PMLE, Professional Machine Learning Engineer). Ils découvriront l'ampleur et le champ d'application des domaines abordés lors de l'examen. Ils détermineront s'ils sont prêts à passer l'examen et créeront leur propre plan de formation.
Learn to build generative AI applications leveraging Firebase Genkit to call LLMs on Google Cloud and elsewhere, simplify complex applications' code and deploy your solution on Google Cloud.
Dans ce bref cours consacré à l'intégration d'applications avec les modèles Gemini 1.0 Pro sur Google Cloud, vous découvrirez l'API Gemini et ses modèles d'IA générative. Vous apprendrez également à accéder aux modèles Gemini 1.0 Pro et Gemini 1.0 Pro Vision à partir du code. Enfin, vous testerez les capacités des modèles avec des requêtes contenant du texte, des images et des vidéos à partir d'une application.
Demonstrate the ability to create and deploy generative virtual agents with natural language using Vertex AI Agent Builder and augment responses by integrating Gemini responses with third party APIs and your own data stores You will use the following technologies and Google Cloud services: Vertex AI Agent Builder Gemini Cloud Functions
In this course, you learn about Cloud Run functions, Google's serverless, fully-managed functions as a service (FaaS) product that lets you implement single-purpose function code that reponds to HTTP requests and events from your cloud infrastructure.
Dans ce cours, vous profiterez de l'expérience d'ingénieurs et de formateurs en ML qui développent des pipelines de ML chez Google Cloud à l'aide de technologies de pointe. Les premiers modules porteront sur TensorFlow Extended (TFX), la plate-forme Google de machine learning de production basée sur TensorFlow et conçue pour gérer des pipelines et des métadonnées de ML. Vous explorerez les composants de pipelines et apprendrez à orchestrer des pipelines avec TFX. Vous verrez également comment automatiser vos pipelines au moyen d'une intégration et d'un déploiement continus, et comment gérer des métadonnées de ML. Ensuite, nous découvrirons comment automatiser et réutiliser des pipelines de ML sur plusieurs frameworks de ML tels que TensorFlow, PyTorch, scikit-learn et XGBoost. Vous apprendrez également à utiliser Cloud Composer, un autre outil Google Cloud, pour orchestrer vos pipelines d'entraînement continu. Enfin, nous verrons comment utiliser MLflow pour gérer l'ensemble du cycle d…
This course discusses how environments are managed in Apigee hybrid, and how runtime plane components are secured. You will also learn how to deploy and debug API proxies in Apigee hybrid, and about capacity planning and scaling.
This course introduces the Cloud Run serverless platform for running applications. In this course, you learn about the fundamentals of Cloud Run, its resource model and the container lifecycle. You learn about service identities, how to control access to services, and how to develop and test your application locally before deploying it to Cloud Run. The course also teaches you how to integrate with other services on Google Cloud so you can build full-featured applications.
Ce cours apporte aux professionnels du machine learning les techniques, les bonnes pratiques et les outils essentiels pour évaluer les modèles d'IA prédictive et générative. L'évaluation des modèles est primordiale pour s'assurer que les systèmes de ML fournissent des résultats fiables, précis et de haut niveau en production. Les participants acquerront une connaissance approfondie de diverses métriques et méthodologies d'évaluation, ainsi que de leur application appropriée dans différents types de modèles et tâches. Le cours mettra l'accent sur les défis uniques posés par les modèles d'IA générative et proposera des stratégies pour les relever efficacement. Grâce à la plate-forme Vertex AI de Google Cloud, les participants apprendront à implémenter des processus d'évaluation rigoureux pour la sélection, l'optimisation et la surveillance continue des modèles.
This course introduces you to event-based applications and teaches you how to use service orchestration and choreography to coordinate microservices. Using lectures and hands-on labs, you learn how to use Workflows, Eventarc, Cloud Tasks, and Cloud Scheduler to build microservices applications on Google Cloud.
This course helps you recognize the need to implement business process automation in your organization. You learn about automation patterns and use cases, and how to use AppSheet constructs to implement automation in your app. You learn about the various features of AppSheet automation, and integrate your app with Google Workspace products. You also learn how to send email, push notifications and text messages from your app, parse documents and generate reports with AppSheet automation.
Terminez le cours intermédiaire Développer des applications d'IA générative avec Gemini et Streamlit pour recevoir un badge démontrant vos compétences dans les domaines suivants : la génération de texte, l'application d'appels de fonction avec le SDK Python et l'API Gemini, et le déploiement d'une application Streamlit avec Cloud Run. Vous découvrirez différentes manières de demander à Gemini de générer du texte, d'utiliser Cloud Shell pour effectuer des tests et des itérations sur une application Streamlit, puis de l'empaqueter en tant que conteneur Docker déployé dans Cloud Run.
In this course, you learn about containers and how to build, and package container images. The content in this course includes best practices for creating and securing containers, and provides an introduction to Cloud Run and Google Kubernetes Engine for application developers.
This course teaches you how to implement various capabilities that include data organization and management, application security, actions and integrations in your app using AppSheet. The course also includes topics on managing and upgrading your app, improving performance and troubleshooting issues with your app.
In this course you will learn the fundamentals of no-code app development and recognize use cases for no-code apps. The course provides an overview of the AppSheet no-code app development platform and its capabilities. You learn how to create an app with data from spreadsheets, create the app’s user experience using AppSheet views and publish the app to end users.
In this course, you learn the fundamentals of application development on Google Cloud. You learn best practices for cloud applications, and how to select compute and data options to match your application use cases. You're introduced to generative AI and how it's used to help build applications. You learn about authentication and authorization, application deployment, continuous integration and delivery, and monitoring and performance tuning for your applications running in Google Cloud. Using lectures and hands-on labs, you learn how to get started building and running applications on Google Cloud.
This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.
This quest will test your ability to create and deploy both Search applications and Chatbots using Vertex AI Agent Builder and Dialgflow. You will also be tasked with implementing a custom RAG system that uses the Discovery API to query a Vertex AI Data Store and use Gemini to answer user questions. You will use the following technologies and Google Cloud services: Vertex AI Agent Builder Search Apps Agents Gemini The assessment is divided into three main tasks: Building and deploying a Website Search App Deploying a Chatbot built using Vertex AI Agent Builder Creating a Custom Q&A Solution using the Discovery API
Les organisations de toutes tailles exploitent le potentiel et la flexibilité du cloud afin de transformer leurs opérations. Toutefois, la gestion et le scaling des ressources cloud peuvent s'avérer complexes. "Scaling avec la suite Google Cloud Operations" présente les concepts fondamentaux des opérations modernes, de la fiabilité et de la résilience dans le cloud, ainsi que la manière dont Google Cloud peut vous aider à atteindre ces objectifs. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.
Les organisations qui migrent des données et des applications vers le cloud font face à de nouveaux défis en termes de sécurité. Le cours "Confiance et sécurité avec Google Cloud" présente les principes de base de la sécurité dans le cloud, les avantages de l'approche multicouche de Google Cloud concernant la sécurité de l'infrastructure, et la manière dont Google gagne et conserve la confiance des clients vis-à-vis du cloud. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.
De nombreuses entreprises traditionnelles utilisent d'anciens systèmes et d'anciennes applications qui ne peuvent plus satisfaire les attentes des clients d'aujourd'hui. Les chefs d'entreprise doivent régulièrement choisir entre deux options : entretenir leurs systèmes informatiques vieillissants ou investir dans de nouveaux produits et services. Le cours "Moderniser l'infrastructure et les applications avec Google Cloud" aborde ces problématiques et propose des solutions pour les résoudre à l'aide de la technologie cloud. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.
Obtenez un badge de compétence en terminant le cours intermédiaire Créer et déployer des solutions de machine learning sur Vertex. Vous y apprendrez à utiliser la plate-forme Vertex AI de Google Cloud, AutoML et les services d'entraînement personnalisés pour entraîner, évaluer, régler, expliquer et déployer des modèles de machine learning. Ce cours, qui ouvre droit à un badge de compétence, est destiné aux data scientists et aux ingénieurs en machine learning. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
L'intelligence artificielle (IA) et le machine learning (ML) représentent une évolution importante de l'informatique et transforment rapidement un grand nombre de secteurs. Le cours "Innover avec l'intelligence artificielle de Google Cloud" explore comment les organisations peuvent utiliser l'IA et le ML pour repenser leurs processus métier. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.
La technologie cloud est une grande source de valeur pour les entreprises. En combinant le potentiel de cette technologie avec celui des données, il est possible de créer encore plus de valeur et d'offrir de nouvelles expériences client. "Explorer la transformation des données avec Google Cloud" vous fait découvrir la valeur que les données peuvent apporter à une entreprise et les façons dont Google Cloud peut les rendre utiles et accessibles. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il a pour but d'aider les participants à évoluer dans leur poste et à façonner l'avenir de leur entreprise.
La technologie cloud et la transformation numérique suscitent beaucoup d'enthousiasme, mais elles génèrent aussi souvent beaucoup de questions laissées sans réponse. Par exemple : Qu'est-ce que la technologie cloud ? Qu'entend-on par transformation numérique ? Que peut vous apporter la technologie cloud ? Et par où commencer ? Si vous vous êtes déjà posé une de ces questions, vous êtes au bon endroit. Ce cours offre un aperçu des opportunités et des défis que les entreprises peuvent rencontrer lors de leur transformation numérique. Si vous souhaitez découvrir les technologies cloud afin de pouvoir exceller dans votre rôle et contribuer à bâtir l'avenir de votre entreprise, ce cours d'introduction sur la transformation numérique est pour vous. Il fait partie du parcours de formation Cloud Digital Leader.
In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.
This course enables system integrators and partners to understand the principles of automated migrations, plan legacy system migrations to Google Cloud leveraging G4 Platform, and execute a trial code conversion.
This course helps developers customize Chronicle and augment its abilities with third party integrations.
This course will familiarize you with the core functionality of Chronicle, including the user interface, connections, and settings.
Learn the technical aspects you need to know about Chronicle and how it can help you detect and action threats.
Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les participants s'entraîneront à utiliser l'ingestion en flux continu de Vertex AI Feature Store au niveau du SDK.
Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les ingénieurs en machine learning utilisent des outils pour améliorer et évaluer en permanence les modèles déployés. Ils collaborent avec des data scientists (ou peuvent occuper ce poste) qui développent des modèles permettant de déployer de manière rapide et rigoureuse les solutions de machine learning les plus performantes.
This learning path aims to upskill Google Cloud partners to perform the specific tasks associated with the priority workload. Learners will discover the specific tasks in rehosting applications from on-premises to Google Cloud. It also aims to re-platform applications to run in GKE. Learners will perform the tasks of Migrating MySQL, Angular, and .NET applications from their on-premises machines to Google Cloud VM instances. Sample code will be used during the migration. Learners will complete a challenge lab that focuses on the critical steps in a rehosting exercise - copying over code for the back-end, front-end, and middle-tier applications and validating that the applications have been migrated correctly. Learners will also complete a challenge lab that focuses on the critical steps in a re-platforming exercise - creating back-end, front-end, and middle-tier Docker images, deploying the same in the GKE cluster, and validating that the application has been deployed correctly.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
This course aims to upskill Google Cloud partners to perform specific tasks in rehosting applications from on-premise to Google Cloud. It also aims to re-platform applications to run in GKE. Learners will perform the tasks of Migrating MySQL, Angular, and Java applications from their on-premise machines to Google Cloud VM instances. Sample code will be used during the migration.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
Dans ce cours, nous abordons en détail les composants et les bonnes pratiques de construction de systèmes de ML hautes performances dans des environnements de production. Nous verrons aussi certaines des considérations les plus courantes concernant la construction de ces systèmes, telles que l'entraînement statique, l'entraînement dynamique, l'inférence statique, l'inférence dynamique, les tâches TensorFlow distribuées et les TPU. Ce cours a pour objectif d'explorer les caractéristiques d'un bon système de ML, au-delà de sa capacité à effectuer des prédictions correctes.
Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.
Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.
Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.
This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.
Ce cours présente une approche pratique du workflow de ML avec une étude de cas dans laquelle une équipe est confrontée à plusieurs exigences métier et cas d'utilisation de ML. Cette équipe doit comprendre quels outils sont nécessaires pour gérer et gouverner les données, et trouver la meilleure approche pour les prétraiter. On présente à cette équipe trois options de création de modèles de ML pour deux cas d'utilisation spécifiques. Ce cours explique pourquoi l'équipe tire parti des avantages d'AutoML, de BigQuery ML ou de l'entraînement personnalisé pour atteindre ses objectifs.
Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.
Ce cours présente les avantages liés à l'utilisation de Vertex AI Feature Store, ainsi que la manière d'améliorer la précision des modèles de ML et de déterminer les colonnes de données présentant les caractéristiques les plus utiles. Ce cours inclut également du contenu et des ateliers portant sur l'ingénierie des caractéristiques à l'aide de BigQuery ML, Keras et TensorFlow.
Ce cours porte sur la création de modèles de ML à l'aide de TensorFlow et Keras, l'amélioration de la précision des modèles de ML et l'écriture de modèles de ML pour une utilisation évolutive.
Le cours commence par une discussion sur les données : vous découvrirez comment améliorer leur qualité et effectuer des analyses exploratoires. Ensuite, nous vous présenterons Vertex AI AutoML et vous expliquerons comment créer, entraîner et déployer un modèle de machine learning (ML) sans écrire une ligne de code. Vous découvrirez également les avantages de BigQuery ML. Enfin, nous verrons comment optimiser un modèle de ML, et en quoi la généralisation ainsi que l'échantillonnage peuvent vous aider à évaluer la qualité des modèles de ML destinés à un entraînement personnalisé.
Dans ce cours, vous découvrirez comment Gemini, un outil de collaboration Google Cloud optimisé par l'IA générative, vous aide à utiliser les produits et services Google pour développer, tester et gérer des applications. Avec l'assistance de Gemini, vous apprendrez à développer une application Web, à corriger les erreurs de l'application, à créer des tests et à interroger des données. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore le cycle de vie du développement logiciel (SDLC, software development lifecycle). Duet AI a été rebaptisé Gemini, notre modèle nouvelle génération.
Dans ce cours, vous découvrirez comment Gemini, un collaborateur de Google Cloud optimisé par l'IA générative, aide les ingénieurs à gérer l'infrastructure. Vous apprendrez à demander à Gemini de trouver et comprendre les journaux d'application, de créer un cluster GKE et d'étudier comment créer un environnement de compilation. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore le workflow DevOps. Duet AI a été renommé Gemini, notre modèle nouvelle génération.
Dans ce cours, vous découvrirez comment Gemini, un outil de collaboration Google Cloud optimisé par l'IA générative, aide les ingénieurs réseau à créer, mettre à jour et gérer des réseaux VPC. Vous apprendrez comment demander à Gemini de vous fournir des conseils spécifiques pour vos tâches de gestion de réseaux, que vous ne pourriez pas obtenir avec un moteur de recherche. À l'aide d'un atelier pratique, vous verrez en quoi Gemini permet d'utiliser plus facilement les réseaux VPC Google Cloud. Duet AI a été rebaptisé Gemini, notre modèle nouvelle génération.
Dans ce cours, vous découvrirez comment Gemini, un collaborateur de Google Cloud optimisé par l'IA générative, vous aide à sécuriser votre environnement et vos ressources cloud. Vous apprendrez à déployer des exemples de charges de travail dans un environnement Google Cloud, puis à identifier et à corriger les erreurs de configuration de la sécurité avec Gemini. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore votre stratégie de sécurité dans le cloud. Duet AI a été renommé Gemini, notre modèle nouvelle génération.
This 1-week, accelerated on-demand course builds upon Google Cloud Platform Big Data and Machine Learning Fundamentals. Through a combination of video lectures, demonstrations, and hands-on labs, you'll learn to build streaming data pipelines using Google cloud Pub/Sub and Dataflow to enable real-time decision making. You will also learn how to build dashboards to render tailored output for various stakeholder audiences.
Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.
Dans ce cours, vous découvrirez comment Gemini, un outil de collaboration Google Cloud optimisé par l'IA générative, aide à analyser les données client et à prédire les ventes de produits. Vous apprendrez également à identifier, classer et développer de nouveaux clients à l'aide des données client dans BigQuery. À l'aide d'ateliers pratiques, vous verrez en quoi Gemini améliore les workflows d'analyse de données et de machine learning. Duet AI a été rebaptisé Gemini, notre modèle nouvelle génération.
Dans le dernier volet de la série de cours sur Dataflow, nous allons présenter les composants du modèle opérationnel de Dataflow. Nous examinerons les outils et techniques permettant de résoudre les problèmes et d'optimiser les performances des pipelines. Nous passerons ensuite en revue les bonnes pratiques en matière de test, de déploiement et de fiabilité pour les pipelines Dataflow. Nous terminerons par une présentation des modèles, qui permettent de faire évoluer facilement les pipelines Dataflow pour les adapter aux organisations comptant des centaines d'utilisateurs. Ces leçons vous aideront à vous assurer que votre plate-forme de données est stable et résiliente face aux imprévus.
Dans ce cours, vous découvrirez comment Gemini, un collaborateur de Google Cloud optimisé par l'IA générative, aide les administrateurs à provisionner l'infrastructure. Vous apprendrez à demander à Gemini d'expliquer l'infrastructure, de déployer les clusters GKE et de mettre à jour l'infrastructure existante. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore le workflow de déploiement GKE. Duet AI a été renommé "Gemini", notre modèle nouvelle génération.
Terminez le cours d'introduction Créer un maillage de données avec Dataplex pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création d'un maillage de données avec Dataplex pour faciliter la sécurité, la gouvernance et la découverte des données sur Google Cloud. Cela comprend l'ajout de tags à des éléments, l'attribution de rôles IAM et l'évaluation de la qualité des données dans Dataplex.
Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML.
Terminez le cours intermédiaire Créer un entrepôt de données avec BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : la jointure de données pour créer des tables, la résolution des problèmes liés aux jointures, l'ajout de données avec des unions, la création de tables partitionnées par date, et l'utilisation d'objets JSON, ARRAY et STRUCT dans BigQuery. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.
Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets.
Dans ce deuxième volet de la série de cours sur Dataflow, nous allons nous intéresser de plus près au développement de pipelines à l'aide du SDK Beam. Nous allons commencer par passer en revue les concepts d'Apache Beam. Nous allons ensuite parler du traitement des données par flux à l'aide de fenêtres, de filigranes et de déclencheurs. Nous passerons ensuite aux options de sources et de récepteurs dans vos pipelines, aux schémas pour présenter vos données structurées, et nous verrons comment effectuer des transformations avec état à l'aide des API State et Timer. Nous aborderons ensuite les bonnes pratiques qui vous aideront à maximiser les performances de vos pipelines. Vers la fin du cours, nous présentons le langage SQL et les DataFrames pour représenter votre logique métier dans Beam, et nous expliquons comment développer des pipelines de manière itérative à l'aide des notebooks Beam.
Ce cours est le premier d'une série en trois volets sur le traitement des données sans serveur avec Dataflow. Dans ce premier cours, nous allons commencer par rappeler ce qu'est Apache Beam et sa relation avec Dataflow. Ensuite, nous aborderons la vision d'Apache Beam et les avantages de son framework de portabilité, qui permet aux développeurs d'utiliser le langage de programmation et le backend d'exécution de leur choix. Nous vous montrerons aussi comment séparer le calcul du stockage et économiser de l'argent grâce à Dataflow, puis nous examinerons les interactions entre les outils de gestion de l'identification et des accès avec vos pipelines Dataflow. Enfin, nous verrons comment implémenter le modèle de sécurité adapté à votre cas d'utilisation sur Dataflow.
Intégrer le machine learning à des pipelines de données renforce la capacité à dégager des insights des données. Ce cours passera en revue plusieurs façons d'intégrer le machine learning à des pipelines de données sur Google Cloud. Vous découvrirez AutoML pour les cas ne nécessitant que peu de personnalisation (voire aucune), ainsi que Notebooks et BigQuery ML pour les situations qui requièrent des capacités de machine learning plus adaptées. Enfin, vous apprendrez à utiliser des solutions de machine learning en production avec Vertex AI.
Le traitement de flux de données est une pratique de plus en plus courante, car elle permet aux entreprises d'obtenir des métriques sur leurs activités commerciales en temps réel. Ce cours explique comment créer des pipelines de flux de données sur Google Cloud et présente Pub/Sub, une solution qui permet de gérer des données de flux entrants. Par ailleurs, vous verrez comment appliquer des agrégations et des transformations à des flux de données à l'aide de Dataflow, mais aussi comment stocker des enregistrements traités dans BigQuery ou Bigtable pour qu'ils puissent être analysés. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de flux de données sur Google Cloud à l'aide de Qwiklabs.
Les pipelines de données s'inscrivent généralement dans l'un des paradigmes EL (extraction et chargement), ELT (extraction, chargement et transformation) ou ETL (extraction, transformation et chargement). Ce cours indique quel paradigme utiliser pour le traitement de données par lot en fonction du contexte. Il présente également plusieurs technologies Google Cloud de transformation des données, y compris BigQuery, l'exécution de Spark sur Dataproc, les graphiques de pipelines dans Cloud Data Fusion et le traitement des données sans serveur avec Dataflow. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de données sur Google Cloud à l'aide de Qwiklabs.
In this course, you learn how to create APIs that utilize multiple services and how you can use custom code on Apigee. You will also learn about fault handling, and how to share logic between proxies. You learn about traffic management and caching. You also create a developer portal, and publish your API to the portal. You learn about logging and analytics, as well as CI/CD and the different deployment models supported by Apigee. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform.This is the third and final course of the Developing APIs with Google Cloud's Apigee API Platform course series.
Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.
Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Ingénierie des données sur Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Créer des pipelines de données en batch sur Google Cloud".
Ce cours a pour objectif d'aider les participants à créer un plan de formation pour l'examen de certification Professional Data Engineer. Les participants découvriront l'étendue et le champ d'application des domaines abordés lors de l'examen, puis évalueront leur niveau de préparation à l'examen et créeront leur propre plan de formation.
Terminez le cours intermédiaire Inspecter des documents enrichis avec Gemini multimodal et le RAG multimodal pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'utilisation de requêtes multimodales pour extraire des informations de données textuelles et visuelles, la génération d'une description vidéo et la récupération d'informations qui ne sont pas incluses dans une vidéo en utilisant la multimodalité avec Gemini ; la création de métadonnées de documents contenant du texte et des images, la collecte de tous les éléments de texte pertinents, et l'impression de citations à l'aide de la génération augmentée par récupération (RAG, Retrieval Augmented Generation) multimodale avec Gemini. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et …
In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.
In this course, you learn how to secure your APIs. You explore the security concerns you will encounter for your APIs. You learn about OAuth, the primary authorization method for REST APIs. You will learn about JSON Web Tokens (JWTs) and federated security. You also learn about securing against malicious requests, safely sending requests across a public network, and how to secure your data for users of Apigee. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform. This is the second course of the Developing APIs with Google Cloud's Apigee API Platform series. After completing this course, enroll in the API Development on Google Cloud's Apigee API Platform course.
In this course, you learn how to design APIs, and how to use OpenAPI specifications to document them. You learn about the API life cycle, and how the Apigee API platform helps you manage all aspects of the life cycle. You learn about how APIs can be designed using API proxies, and how APIs are packaged as API products to be used by app developers. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform. This is the first course of the Developing APIs with Google Cloud's Apigee API Platform series. After completing this course, enroll in the API Security on Google Cloud's Apigee API Platform course.
Learn to use LangChain to call Google Cloud LLMs and Generative AI Services and Datastores to simplify complex applications' code.
Learn how Gemini can revolutionize your ability to develop applications! This course helps developers go beyond the basics and learn how to integrate Gemini into their workflows.
Delve into the power of multimodal AI with this project-based course using Gemini. Master essential techniques and build advanced applications. You will: - Experiment with multimodal use cases to expand application possibilities - Implement recommendation systems that combine suggestions with clear reasoning - Design a powerful document search engine using multimodal RAG methods Important Disclaimer: Please note that these labs are under active development. Functionality may occasionally change or break unexpectedly, and content might be removed or altered without notice. By proceeding with this course, you acknowledge this potential disruption.
Unlock the power of Google Cloud's cutting-edge Vertex AI Gemini API to craft innovative multimodal applications. This hands-on course delves into the integration of the Vertex AI SDK for Python, guiding you through the generation of sophisticated responses powered by the Gemini Pro and Gemini Pro Vision models. Get ready to build, deploy, and harness the transformative capabilities of multimodal AI within your own projects. Important Disclaimer: Please note that these labs are under active development. Functionality may occasionally change or break unexpectedly, and content might be removed or altered without notice. By proceeding with this course, you acknowledge this potential disruption.
Get hands-on with the Gemini Pro and Gemini Pro Vision models through our new labs. This course gives you a unique chance to explore these powerful AI tools while our training content is still in development. Learn to interact with the models using the Vertex AI Gemini API and cURL commands, and help us create the best possible learning experience around this technology. Important Disclaimer: Please note that these labs are under active development. Functionality may occasionally change or break unexpectedly, and content might be removed or altered without notice. By proceeding with this course, you acknowledge this potential disruption.
This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.
Avec ce cours, explorez les technologies de recherche, les outils et les applications optimisés par l'IA. Découvrez la recherche sémantique, qui utilise les embeddings vectoriels (ou "plongements vectoriels"), la recherche hybride, qui combine les approches sémantique et par mots-clés, et la génération augmentée par récupération (RAG), qui réduit les hallucinations générées par l'IA en agissant comme un agent ancré. Enfin, acquérez une expérience pratique de Vertex AI Vector Search afin de créer votre moteur de recherche intelligent.
This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.
This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.
(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.
Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
This content is deprecated. Please see the latest version of the course, here.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Dans ce cours, vous découvrirez comment Gemini, un collaborateur de Google Cloud optimisé par l'IA générative, aide les développeurs à créer des applications. Vous apprendrez à demander à Gemini d'expliquer du code, de recommander des services Google Cloud et de générer du code pour vos applications. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore le workflow de développement d'applications. Duet AI a été renommé Gemini, notre modèle nouvelle génération.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use Generative AI App Builder to integrate enterprise-grade generative AI search.
Avec l'essor de l'utilisation de l'intelligence artificielle et du machine learning en entreprise, il est de plus en plus important de développer ces technologies de manière responsable. Pour beaucoup, le véritable défi réside dans la mise en pratique de l'IA responsable, qui s'avère bien plus complexe que dans la théorie. Si vous souhaitez découvrir comment opérationnaliser l'IA responsable dans votre organisation, ce cours est fait pour vous. Dans ce cours, vous allez apprendre comment Google Cloud procède actuellement, en s'appuyant sur des bonnes pratiques et les enseignements tirés, afin de vous fournir un framework pour élaborer votre propre approche d'IA responsable.
Dans ce cours de niveau débutant, vous découvrirez le workflow d'analyse de données sur Google Cloud, ainsi que les outils que vous pouvez utiliser pour explorer, analyser et visualiser les données, et partager vos observations avec les personnes concernées. Grâce à une étude de cas, des ateliers pratiques, des leçons et des quiz/démos, ce cours vous montrera comment transformer des ensembles de données bruts en données exploitables dans des visualisations et des tableaux de bord percutants. Que vous travailliez déjà avec des données et souhaitiez apprendre à mettre Google Cloud pleinement à profit ou que vous cherchiez à progresser dans votre carrière, ce cours vous sera utile. La plupart des personnes qui effectuent ou utilisent des analyses de données dans leur travail en tireront des enseignements.
Ce cours présente les solutions d'IA et de machine learning (ML) de Google Cloud permettant de développer des projets d'IA prédictive et générative. Il décrit les technologies, produits et outils disponibles tout au long du cycle de vie des données à l'IA, en englobant les éléments de base, le développement et les solutions d'IA. Son but est d'aider les data scientists, les développeurs d'IA et les ingénieurs en ML à améliorer leurs compétences et connaissances par le biais d'expériences d'apprentissage captivantes et d'exercices pratiques.
Ce cours accéléré à la demande présente aux participants l'infrastructure complète et flexible de Google Cloud Platform ainsi que les services de plate-forme fournis, en s'intéressant plus particulièrement à Compute Engine. À travers un ensemble de vidéos de présentation, de démonstrations et d'ateliers pratiques, les participants découvrent et déploient des éléments de solution, y compris des composants d'infrastructure tels que les réseaux, les systèmes et les services applicatifs. Ce cours aborde également le déploiement de solutions pratiques, telles que les clés de chiffrement fournies par le client, la gestion de la sécurité et des accès, les quotas et la facturation, ainsi que la surveillance des ressources.
Ce cours accéléré à la demande présente aux participants les services complets et flexibles d'infrastructure et de plate-forme offerts par Google Cloud, en s'intéressant plus particulièrement à Compute Engine. À travers un ensemble de cours vidéo, de démonstrations et d'ateliers pratiques, les participants découvrent et déploient des éléments de solution, y compris des composants d'infrastructure tels que des réseaux, des machines virtuelles et des services d'applications. Vous découvrirez comment utiliser Google Cloud via la console et Cloud Shell. Vous en apprendrez également plus sur le rôle d'un architecte cloud, sur les approches de la conception d'infrastructure et sur la configuration de réseaux virtuels avec Virtual Private Cloud (VPC), les projets, les réseaux, les sous-réseaux, les adresses IP, les routes et les règles de pare-feu.
Ce cours à la demande accéléré présente aux participants les services complets et flexibles d'infrastructure et de plate-forme offerts par Google Cloud. À travers un ensemble de cours vidéo, de démonstrations et d'ateliers pratiques, les participants explorent et déploient des éléments de solution, y compris l'interconnexion sécurisée de réseaux, l'équilibrage de charge, l'autoscaling, l'automatisation de l'infrastructure et les services gérés.
Terminez le cours d'introduction Surveiller et journaliser avec Google Cloud Observability pour recevoir un badge démontrant vos compétences dans les domaines suivants : la surveillance des machines virtuelles dans Compute Engine, l'utilisation de Cloud Monitoring pour la supervision multiprojet, l'extension des fonctionnalités de surveillance et de journalisation à Cloud Functions, la création et l'envoi de métriques d'application personnalisées, et la configuration d'alertes Cloud Monitoring en fonction de ces métriques personnalisées.
Terminez le cours intermédiaire Implémenter des workflows DevOps dans Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de dépôts git avec Cloud Source Repositories, le lancement, la gestion et le scaling de déploiements sur Google Kubernetes Engine (GKE), et le développement de l'architecture de pipelines CI/CD qui automatisent la compilation d'images de conteneurs et leur déploiement vers GKE. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Course two of the Architecting Hybrid Cloud with Anthos series prepares students to operate and observe Anthos environments. Through presentations and hands-on labs, participants explore adjusting existing clusters, setting up advanced traffic routing policies, securing communication across workloads, and observing clusters in Anthos. This course is a continuation of course one, Multi-Cluster, Multi-Cloud with Anthos, and assumes direct experience with the topics covered in that course.
Terminez le cours intermédiaire Créer une infrastructure avec Terraform sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : les principes d'Infrastructure as Code (IaC) avec Terraform, le provisionnement et la gestion des ressources Google Cloud avec des configurations Terraform, la gestion efficace des états (local et distant) et la modularisation du code Terraform à des fins de réutilisabilité et d'organisation.
Ce cours est une introduction à Terraform pour Google Cloud. Il permet aux participants de découvrir comment Terraform peut être utilisé pour implémenter une Infrastructure as Code, et comment appliquer certaines de ses fonctionnalités essentielles pour créer et gérer une infrastructure Google Cloud. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant et en gérant des ressources Google Cloud à l'aide de Terraform.
Ce cours permet aux participants d'apprendre à créer des solutions hautement fiables et efficaces sur Google Cloud en s'appuyant sur des modèles de conception éprouvés. Il s'inscrit dans la continuité des cours "Concevoir une architecture avec Google Compute Engine" et "Concevoir une architecture avec Google Kubernetes Engine" et demande une expérience pratique des technologies abordées dans chaque cours. À travers un ensemble de présentations, d'activités de conception et d'ateliers pratiques, les participants apprennent à définir des exigences techniques et commerciales, et à trouver un équilibre entre elles pour concevoir des déploiements Google Cloud hautement fiables et disponibles, sécurisés et économes.
Dans bien des services informatiques, il existe des divergences entre les avantages souhaités par les développeurs, à savoir l'agilité, et ceux des opérateurs, qui recherchent la stabilité. L'ingénierie de la fiabilité des sites (SRE) permet à Google d'aligner les mesures incitatives entre le développement et les opérations, et de proposer une assistance à la production critique. Adopter des pratiques techniques et culturelles de l'ingénierie SRE permet d'améliorer la collaboration entre les équipes métiers et informatiques. Ce cours présente les pratiques clés de l'ingénierie SRE façon Google, ainsi que le rôle déterminant que jouent les responsables IT et les chefs d'entreprise dans la réussite de son adoption au sein de leur organisation.
Terminez le cours intermédiaire Déployer des applications Kubernetes sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la configuration et la création d'images de conteneur Docker, la création et la gestion de clusters Google Kubernetes Engine (GKE), l'utilisation de kubectl pour gérer efficacement les clusters et le déploiement d'applications Kubernetes en appliquant des pratiques de livraison continue (CD) robustes.
Terminez le cours intermédiaire Développer des applications sans serveur avec Firebase pour recevoir un badge démontrant vos compétences dans les domaines suivants : la conception et la création d'applications Web sans serveur avec Firebase, l'utilisation de Firestore pour gérer des bases de données, l'automatisation des processus de déploiement à l'aide de Cloud Build et l'intégration des fonctionnalités de l'Assistant Google dans vos applications.
Terminez le cours intermédiaire Développer des applications sans serveur sur Cloud Run pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'intégration de Cloud Run à Cloud Storage pour la gestion des données, la conception de systèmes asynchrones résilients à l'aide de Cloud Run et Pub/Sub, la construction de passerelles API REST reposant sur Cloud Run, et la création et le déploiement de services sur Cloud Run.
Course four of the Anthos series prepares students to consider multiple approaches for modernizing applications and services within Anthos environments. Topics include optimizing workloads on serverless platforms and migrating workloads to Anthos. This course is a continuation of course three, Anthos on Bare Metal, and assumes direct experience with the topics covered in that course.
Bienvenue dans le cours "Premiers pas avec Google Kubernetes Engine". Si vous vous intéressez à Kubernetes, une couche logicielle située entre vos applications et votre infrastructure matérielle, vous êtes au bon endroit. Google Kubernetes Engine vous permet d'accéder à Kubernetes en tant que service géré sur Google Cloud. L'objectif de ce cours est de vous présenter les principes de base de Google Kubernetes Engine (GKE), et de vous apprendre à conteneuriser et exécuter des applications dans Google Cloud. Le cours commence par une introduction aux principes de base de Google Cloud, puis se poursuit par une présentation des conteneurs et de Kubernetes, de l'architecture de Kubernetes et des opérations Kubernetes.
This course introduces you to fundamentals, practices, capabilities and tools applicable to modern cloud-native application development using Google Cloud Run. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to on Google Cloud using Cloud Run.design, implement, deploy, secure, manage, and scale applications
Course Description:
Course Description:
Dans ce cours, les développeurs d'applications apprennent à concevoir et développer des applications cloud natives qui s'intègrent parfaitement aux services gérés de Google Cloud. À travers un ensemble de présentations, de démonstrations et d'ateliers pratiques, les participants apprendront à appliquer les bonnes pratiques de développement d'applications et à utiliser les services Google Cloud Storage appropriés pour le stockage d'objets, les données relationnelles, la mise en cache et les données analytiques. Il est obligatoire de terminer une version de chaque atelier. Chaque atelier est disponible en Node.js. Dans la plupart des cas, les mêmes ateliers sont aussi disponibles en Python ou en Java. Vous pouvez terminer chaque atelier dans la langue que vous voulez. Il s'agit du premier cours de la série "Developing Applications with Google Cloud". Une fois que vous l'aurez terminé, inscrivez-vous au cours "Securing and Integrating Components of your Application".
If you want to take your Google Cloud networking skills to the next level, look no further. This course is composed of labs that cover real-life use cases and it will teach you best practices for overcoming common networking bottlenecks. From getting hands-on practice with testing and improving network performance, to integrating high-throughput VPNs and networking tiers, Network Performance and Optimization is an essential course for Google Cloud developers who are looking to double down on application speed and robustness.
Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub.
Terminez le cours d'introduction Implémenter l'équilibrage de charge sur Compute Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de commandes gcloud et l'utilisation de Cloud Shell, la création et le déploiement de machines virtuelles dans Compute Engine, ainsi que la configuration d'équilibreurs de charge réseau et HTTP. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Cette quête d'introduction se compose d'ateliers pratiques qui vous permettent de vous familiariser avec les outils et services de base de Google Cloud Platform. "GCP Essentials" est la première quête recommandée pour les personnes s'intéressant à Google Cloud. Vous pouvez la suivre sans aucune connaissance (ou presque) du cloud et, une fois la quête terminée, vous disposerez de compétences pratiques qui vous seront utiles pour n'importe quel projet GCP. De l'écriture de lignes de commande Cloud Shell au déploiement de votre première machine virtuelle en passant par l'exécution d'applications sur Kubernetes Engine avec l'équilibrage de charge, "GCP Essentials" constitue une excellente introduction aux fonctionnalités de base de la plate-forme. Des vidéos d'une minute résument les concepts clés de ces ateliers.
La gestion des réseaux est l'un des aspects les plus importants du cloud computing. Il s'agit de la structure sous-jacente de Google Cloud, qui relie l'ensemble de vos ressources et services entre eux. Ce cours aborde les services de gestion des réseaux essentiels de Google Cloud et vous permet de vous familiariser avec des outils spécialisés dans le développement de réseaux matures grâce à des ateliers pratiques. De la découverte des tenants et aboutissants des VPC à la création d'équilibreurs de charge professionnels, Automatiser le déploiement et gérer le trafic sur un réseau Google Cloud vous permettra d'acquérir l'expérience pratique nécessaire pour développer des réseaux robustes.
This course helps you structure your preparation for the Professional Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.
Ce cours en auto-formation présente une étude approfondie des contrôles et techniques de sécurité sur Google Cloud. À travers des présentations, des démonstrations et des ateliers pratiques, les participants découvrent et déploient les composants d'une solution Google Cloud sécurisée, y compris les technologies de contrôle des accès à Cloud Storage, les clés de sécurité, les clés de chiffrement fournies par le client, les contrôles d'accès aux API, les champs d'application, les VM protégées, le chiffrement, et les URL signées. Le cours aborde également la sécurisation des environnements Kubernetes.
Dans ce cours en auto-formation, les participants étudient des solutions d'atténuation des attaques pouvant survenir en de nombreux points d'une infrastructure basée sur Google Cloud, telles que des attaques par déni de service distribué (DDoS) ou par hameçonnage, ou des menaces liées à la classification et à l'utilisation de contenu. Ils découvriront également Security Command Center, Cloud Logging et les journaux d'audit, ainsi que l'utilisation de Forseti pour connaître l'état de conformité global avec les stratégies de sécurité de l'organisation.
Ce cours en auto-formation présente une étude approfondie des contrôles et techniques de sécurité sur Google Cloud. À travers des présentations enregistrées, des démonstrations et des ateliers pratiques, les participants explorent et déploient les composants d'une solution Google Cloud sécurisée (Cloud Identity, Resource Manager, Cloud IAM, les pare-feu de cloud privé virtuel, Cloud Load Balancing, l'appairage cloud, Cloud Interconnect et VPC Service Controls, par exemple). Ceci est le premier cours de la série "Security in Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Security Best Practices in Google Cloud".
"Concepts fondamentaux de Google Cloud : infrastructure de base" présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.
"Networking in Google Cloud" est une série de cours en six parties. Bienvenue dans la première des six parties de notre série de cours "Networking in Google Cloud: Fundamentals". Ce cours fournit une présentation complète des concepts fondamentaux de la mise en réseau, y compris les principes de base de la mise en réseau, les cloud privés virtuels (VPC) et le partage des réseaux VPC. Il traite également des techniques de journalisation et de surveillance des réseaux.
Bienvenue dans le deuxième cours de la série "Networking in Google Cloud", intitulé "Routing and Addressing". Dans ce cours, nous allons nous intéresser aux concepts centraux du routage et de l'adressage dans le contexte des fonctionnalités réseau de Google Cloud. Dans le module 1, nous poserons les bases en explorant le routage et l'adressage réseau dans Google Cloud. Nous verrons des composants clés tels que le routage IPv4, l'utilisation de vos propres adresses IP (BYOIP, Bring Your Own IP) et la configuration de Cloud DNS. Dans le module 2, nous nous concentrerons sur les options de connexion privée. Nous explorerons des cas d'utilisation et des méthodes permettant d'accéder à Google et à d'autres services de façon privée à l'aide d'adresses IP internes. À la fin de ce cours, vous aurez compris comment acheminer et gérer efficacement votre trafic réseau dans Google Cloud.
Terminez le cours intermédiaire Implémenter des pratiques de base pour la sécurité du cloud sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'attribution de rôles avec Identity and Access Management (IAM) ; la création et la gestion de comptes de service ; l'activation d'une connectivité privée sur les réseaux de cloud privé virtuel (VPC) ; la restriction de l'accès aux applications avec Identity-Aware Proxy ; la gestion des clés et des données chiffrées avec Cloud Key Management Service (KMS) ; et la création d'un cluster Kubernetes privé.
Préparez-vous pour Anthos. Cette collection d'ateliers pratiques sur les bonnes pratiques Google Kubernetes Engine se concentre sur la sécurité à grande échelle lorsque vous déployez et gérez des environnements GKE de production, et plus particulièrement sur le contrôle des accès basé sur les rôles, le renforcement, la mise en réseau VPC et l'autorisation binaire.
Obtenez un badge de compétence en suivant le cours Créer un réseau Google Cloud sécurisé, dans lequel vous découvrirez plusieurs ressources liées à la mise en réseau permettant de créer, de faire évoluer et de sécuriser vos applications sur Google Cloud.
Ce cours présente aux participants des techniques pour surveiller et améliorer les performances de l'infrastructure et des applications dans Google Cloud. À travers un ensemble de présentations, de démonstrations, d'ateliers pratiques et d'études de cas concrets, les participants se familiariseront avec la surveillance full stack, la gestion et l'analyse des journaux en temps réel, le débogage de code en production, le traçage des goulots d'étranglement affectant les performances des applications, et le profilage de l'utilisation du processeur et de la mémoire.
This course helps learners prepare for the Professional Cloud Security Engineer (PCSE) Certification exam. Learners will be exposed to and engage with exam topics through a series of lectures, diagnostic questions, and knowledge checks. After completing this course, learners will have a personalized workbook that will guide them through the rest of their certification readiness journey.