Leandro Santos
Miembro desde 2023
Liga de Diamantes
249358 puntos
Miembro desde 2023
La seguridad es un cualidad indiscutible de los servicios de Google Cloud, por lo que Google Cloud desarrolló herramientas específicas para garantizar la identidad y seguridad en todos tus proyectos. En este curso introductorio, obtendrás experiencia práctica con el servicio de Identity and Access Management (IAM) de Google Cloud, que es el recurso principal para administrar cuentas de usuarios y máquinas virtuales. Obtendrás experiencia con la seguridad de la red a través del aprovisionamiento de VPC y VPN, y aprenderás qué herramientas están disponibles para la protección contra amenazas de seguridad y la pérdida de datos.
This course teaches you some basic Google Kubernetes Engine (GKE) networking. With written lectures, hands-on lab exercises, and quizzes, you learn how to set up services, facilitate communication, and configure secure access to your GKE applications.
Complete the Evaluate Gen AI model and agent performance skill badge to demonstrate your ability to use the Gen AI evaluation service. You will evaluate models to select the best model for a given task, compare models against each other and evaluate the performance of agents. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Evaluation is important at every step of your Gen AI development process. In this course you will learn how to evaluate gen AI agents built using agent frameworks.
This lab tests your ability to develop a real-world Generative AI Q&A solution using a RAG framework. You will use Firestore as a vector database and deploy a Flask app as a user interface to query a food safety knowledge base.
Learn how to build your own Retrieval-Augmented Generation (RAG) solutions for greater control and flexibility than out-of-the-box implementations. Create a custom RAG solution using Vertex AI APIs, vector stores, and the LangChain framework.
En este curso, se explora una solución de generación mejorada por recuperación (RAG) de BigQuery para mitigar las alucinaciones de la IA. Se presenta un flujo de trabajo de RAG que abarca la creación de embeddings, la búsqueda en un espacio vectorial y la generación de respuestas mejoradas. En el curso, se explican los motivos conceptuales de estos pasos y su implementación práctica con BigQuery. Al final del curso, los alumnos podrán crear una canalización de RAG utilizando BigQuery y modelos de IA generativa como Gemini y modelos de embedding para abordar sus propios casos de uso de alucinaciones de IA.
Complete the Edit images with Imagen skill badge to demonstrate your skills with Imagen's mask modes and editing modes to edit images according to certain prompts. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Generate engaging media with Google's foundation models for media. Create new images with Imagen, or edit your existing photos by adding details or outpainting to create a wider view. Replace backgrounds to put your products in new scenes. And learn the basics of generating videos with Veo!
Complete the Develop solutions using Model Garden APIs skill badge to demonstrate your ability to use Vertex AI Model Garden features when building gen AI solutions. You will use partner APIs such as Anthropic Claude ands Meta Llama, deploy and programatically access foundation models like Gemma and Stable Diffusion XL and access Vertex AI Endpoints. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Complete the Extend Gemini with controlled generation and Tool use skill badge to demonstrate your proficiency in connecting models to external tools and APIs. This allows models to augment their knowledge, extend their capabilities and interact with external systems to take actions such as sending an email. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!"
Model tuning is an effective way to customize large models to your tasks. It's a key step to improve the model's quality and efficiency. Model tuning provides benefits such as higher quality results for your specific tasks and increased model robustness. You learn some of the tuning options available in Vertex AI and when to use them.
Model Garden is a model library that helps you discover, test, and deploy models from Google and Google partners. Learn how to explore the available models and select the right ones for your use case. And how to deploy and interact with Model Garden models through the Google Cloud console and APIs.
An LLM-based application can process language in a way that resembles thought. But if you want to extend its capabilities to take actions by running other functions you have coded, you will need to use function calling. This can also be referred to as tool use. Additionally, you can give a model the ability to search Google or search a data store of documents to ground its responses. In other words, to base its answers on that information. In this course, you’ll explore these concepts.
Unlock the power of generative AI to create intelligent, automated agents. After completing this course, you'll be equipped to develop a data store agent that can instantly answer complex questions by automatically extracting and synthesizing information from your websites, documents, or structured data. Say goodbye to static FAQs—your new agent will provide dynamic, accurate answers and even surface the original source URLs, all with a simple and rapid setup.
Earn a skill badge by completing the Protect Cloud Traffic with Chrome Enterprise Premium Security skill badge course, where you learn how to leverage Chrome Enterprise Premium to provide secure access to critical apps and services, improve your security posture with a modern Zero Trust platform, securely provide access to resources using identity and context-aware access control, and support hybrid cloud workloads using Client Connector.
Completa la insignia de habilidad intermedia del curso Mitiga amenazas y vulnerabilidades con Security Command Center y demuestra tus habilidades para realizar las siguientes actividades: prevenir y administrar amenazas del entorno, identificar y mitigar vulnerabilidades de las aplicaciones, y responder a anomalías de seguridad.
Aprende a proteger tus implementaciones en Google Cloud, incluido lo siguiente: cómo usar la administración de bots de Cloud Armor para mitigar el riesgo de bots y controlar el acceso desde clientes automatizados; usar listas de bloqueo de Cloud Armor para restringir o permitir el acceso a tu balanceador de cargas HTTP(S) en el perímetro de Google Cloud; aplicar políticas de seguridad de Cloud Armor para restringir el acceso a objetos almacenados en caché en Cloud CDN y Google Cloud Storage; y mitigar vulnerabilidades comunes con las reglas de WAF de Cloud Armor.
En este curso, aprenderás las habilidades básicas para implementar prácticas de DevSecOps seguras y eficientes en Google Cloud. Aprenderás a proteger tu canalización de desarrollo con servicios de Google Cloud como Artifact Registry, Cloud Build, Cloud Deploy y Autorización Binaria. Esto te permite crear, probar e implementar aplicaciones alojadas en contenedores con controles de seguridad en toda la canalización de CI/CD.
Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.
Te damos la bienvenida al sexto curso de nuestra serie Networking in Google Cloud: Hybrid and Multicloud. En el primer módulo, explicaremos múltiples opciones de conectividad de Cloud con un análisis en profundidad de Cloud Interconnect, en el que exploraremos sus diferentes tipos y funcionalidades. En el segundo módulo, abordaremos Cloud VPN, conoceremos su implementación de topologías de VPN de alta disponibilidad y el Network Connectivity Center, o NCC, para optimizar la administración. Al final del curso, podrás explicar las diferentes opciones de conectividad disponibles para ampliar tus redes locales y en la nube a Google Cloud, y analizar la idoneidad de diferentes servicios de conectividad híbridos y en múltiples nubes de Google Cloud para casos de uso específicos. Empecemos.
Completa la insignia de habilidad intermedia del curso Explora la IA generativa con la API de Gemini en Vertex AI y demuestra tus habilidades para realizar las siguientes actividades: generar texto, analizar imágenes y videos para crear contenido mejorado y aplicar técnicas de llamadas a funciones en la API de Gemini. Descubre cómo aprovechar las sofisticadas técnicas de Gemini, explorar la generación de contenido multimodal y expandir las capacidades de tus proyectos potenciados por IA.
En este curso de capacitación, se amplían los conceptos que se abordaron en el curso Networking in Google Cloud: Fundamentals. A través de presentaciones, demostraciones y labs, los participantes pueden explorar e implementar Cloud Load Balancing.
Te damos la bienvenida al cuarto curso de la serie Redes en Google Cloud. En este curso, profundizarás en los servicios para proteger tu infraestructura de red de Google Cloud. En el primer módulo, Protección contra ataques de denegación de servicio distribuido (DDoS), se explica cómo fortalecer tu red contra los ataques de denegación de servicio distribuido (DDoS) para garantizar la disponibilidad sin interrupciones de tus servicios. En el segundo módulo, Controla el acceso a redes de VPC, aprenderás sobre el control de acceso a redes, lo que te permitirá definir permisos relacionados con quiénes pueden acceder a tus recursos y cómo. Por último, en el tercer módulo, Análisis y supervisión de seguridad avanzados, exploraremos cómo detectar posibles amenazas y responder a ellas de forma proactiva para mantener un entorno de Google Cloud seguro y resiliente. Al final de este curso, tendrás un conocimiento exhaustivo de la seguridad de redes de Google Cloud.
Te damos la bienvenida al tercer curso de la serie "Networking in Google Cloud": Network Architecture. En este curso, explorarás los conceptos básicos para diseñar arquitecturas de red eficientes y escalables en Google Cloud. En el primer módulo, Introducción a la arquitectura de red, te presentaremos los componentes y conceptos fundamentales de la arquitectura de red, entre los que se incluyen las subredes, las rutas, los firewalls y el balanceo de cargas. En el segundo módulo, Topologías de red, exploraremos varias de las topologías de red que se suelen usar en Google Cloud y veremos sus fortalezas y debilidades.
Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud Architect Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.
Cloud Storage, Cloud Functions y Cloud Pub/Sub son todos servicios de Google Cloud que se pueden usar para almacenar, procesar y administrar datos. Los tres servicios se pueden usar en conjunto para crear una variedad de aplicaciones basadas en datos. En esta insignia de habilidad, usarás Cloud Storage para almacenar imágenes, Cloud Functions para procesar las imágenes y Cloud Pub/Sub para enviarlas a otra aplicación.
Complete the introductory Monitor and Manage Google Cloud Resources skill badge to demonstrate skills in the following: granting and revoking IAM permissions; installing monitoring and logging agents; creating, deploying, and testing an event-driven Cloud Run function.
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.
Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud Security Engineer Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.
Este curso está diseñado para analistas de datos que quieren aprender a usar BigQuery para sus labores. Con una combinación de videos, labs y demostraciones, abordaremos varios temas relacionados con cómo transferir, transformar y consultar tus datos en BigQuery para obtener estadísticas que pueden servir a la hora de tomar decisiones empresariales.
This content is deprecated. Please see the latest version of the course, here.
Obtén una insignia de habilidad completando el curso Implementa y administra Apigee X, en el que aprenderás sobre la arquitectura de Apigee X, cómo aprovisionar una organización de Apigee X en un proyecto de Google Cloud, la administración de Apigee X con la IU y la API de Apigee, y el uso de Cloud Armor y la protección contra amenazas de Apigee para proteger tus APIs.
Completa la insignia de habilidad intermedia del curso Optimiza los costos de Google Kubernetes Engine y demuestra tus habilidades para realizar las siguientes actividades: crear y administrar clústeres multiusuario, supervisar el uso de recursos por espacio de nombres, configurar el ajuste de escala automático de clústeres y Pods para mejorar la eficiencia, configurar el balanceo de cargas para optimizar la distribución de recursos y, además, implementar sondeos de funcionamiento y preparación para garantizar el estado y la rentabilidad de la aplicación. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa este curso y el lab de desafío de la evaluación final para recibir una insignia de habilidad que puedes compartir con tu red.
Te damos la bienvenida a la segunda parte y final del curso, Observabilidad en Google Cloud. Abordaremos todo sobre las herramientas de administración del rendimiento de las aplicaciones, como Error Reporting, Cloud Trace y Cloud Profiler.
Completa el curso Configura una red de Google Cloud para obtener una insignia de habilidad. En el curso aprenderás a realizar tareas básicas de redes en Google Cloud, como crear una red personalizada, agregar reglas de firewall de subredes y, luego, crear VMs y probar la latencia cuando se comunican entre sí.
En Diseño de arquitecturas con Google Kubernetes Engine: cargas de trabajo, te embarcarás en un recorrido completo sobre el desarrollo de aplicaciones nativas de la nube. Durante la experiencia de aprendizaje, explorarás las operaciones de Kubernetes, la administración de implementaciones, las herramientas de redes de GKE y el almacenamiento persistente. Este es el primer curso de la serie Diseño de arquitecturas con Google Kubernetes Engine. Después de completarlo, inscríbete en el curso Diseño de arquitecturas con Google Kubernetes Engine: Producción.
Obtén una insignia de habilidad completando el curso Desarrolla tu red de Google Cloud, en el que conocerás múltiples formas de implementar y supervisar aplicaciones, incluidos cómo explorar roles de IAM y agregar o quitar el acceso a los proyectos, crear redes de VPC, implementar y supervisar VMs de Compute Engine, escribir consultas en SQL, implementar y supervisar VMs en Compute Engine y, además, implementar aplicaciones a través de Kubernetes con múltiples enfoques de implementación.
Este curso ayuda a los participantes a crear un plan de estudios para el examen de certificación de PCA (Professional Cloud Architect). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.
Obtén una insignia de habilidad completando el curso Arquitectura de la nube: Diseña, implementa y administra y demuestra tus habilidades para realizar las siguientes actividades: implementar un sitio web de acceso público con servidores web de Apache, configurar una VM de Compute Engine con secuencias de comandos de inicio, configurar el RDP seguro con un host de bastión de Windows y reglas de firewall, compilar y, luego, implementar una imagen de Docker en un clúster de Kubernetes para luego actualizarlo, y crear una instancia de Cloud SQL e importarla a una base de datos de MySQL. Esta insignia de habilidad es un excelente recurso para entender los temas que aparecerán en el examen de certificación Google Cloud Certified Professional Cloud Architect. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma y que prueba tu capacidad de aplicar esos conocimientos en un entorno i…
Complete the introductory Use APIs to Work with Cloud Storage skill badge to demonstrate skills in the following: using APIs to work with Cloud Storage resources, including the Cloud Storage API.
Obtén una insignia de habilidad completando el curso Supervisa entornos con Google Cloud Managed Service para Prometheus, en el que aprenderás sobre la supervisión de Kubernetes con este producto.
Earn a skill badge by completing the Create a Streaming Data Lake on Cloud Storage course, where you use Pub/Sub, Dataflow, and Cloud Storage together to create a streaming data lake on Google Cloud. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Obtén una insignia de habilidad completando el curso Tres formas de usar App Engine, en el que aprenderás a usar esta herramienta con Python, Go y PHP.
Obtén una insignia de habilidad completando el curso Conceptos básicos de Google Cloud Compute, en la que aprenderás a trabajar con máquinas virtuales (VMs), discos persistentes y servidores web con Compute Engine. Una insignia de habilidad es una insignia digital exclusiva que emite el equipo de Google Cloud en reconocimiento a tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa esta insignia de habilidad y el Lab de desafío de la evaluación de la evaluación final para recibir una insignia digital que puedes compartir con tus contactos.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Complete the introductory Secure BigLake Data skill badge course to demonstrate skills with IAM, BigQuery, BigLake, and Data Catalog within Dataplex to create and secure BigLake tables.
Earn a skill badge by completing the Tag and Discover BigLake Data skill badge course, where you use BigQuery, BigLake, and Data Catalog within Dataplex to create, tag, and discover BigLake tables.
Earn a skill badge by completing the Get Started with Eventarc skill badge course, where you use Eventarc to create event triggers for different resources including Pub/Sub topics and Cloud Storage buckets.
Completa la insignia de habilidad introductoria Comienza a usar Dataplex para demostrar tus habilidades en las siguientes tareas: crear recursos de Dataplex, crear tipos de aspectos y aplicar aspectos a las entradas en Dataplex.
Complete the introductory Get Started with Sensitive Data Protection skill badge course to demonstrate skills in the following: using Sensitive Data Protection services (including the Cloud Data Loss Prevention API) to inspect, redact, and de-identify sensitive data in Google Cloud.
Obtén una insignia de habilidad completando el curso Transmite análisis a BigQuery con Dataflow BigQuery, en la que usarás Pub/Sub, Dataflow y BigQuery en conjunto para transmitir para el análisis. Una insignia de habilidad es una insignia digital exclusiva que emite el equipo de Google Cloud en reconocimiento a tu dominio de los productos y servicios de la plataforma y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa esta insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia digital que puedes compartir con tus contactos.
Obtén la insignia de habilidad introductoria completando el curso Tres formas de usar la API de Cloud Speech, en el que aprenderás a usar herramientas de API relacionadas con el habla para sintetizar y transcribir voces.
Cloud Storage, Cloud Functions, and Cloud Pub/Sub are all Google Cloud Platform services that can be used to store, process, and manage data. All three services can be used together to create a variety of data-driven applications. In this skill badge you use Cloud Storage to store images, Cloud Functions to process the images, and Cloud Pub/Sub to send the images to another application.
Obtén una insignia de habilidad completando el curso Comienza a usar API Gateway, en el que aprenderás a usar API Gateway para implementar, proteger y administrar APIs con una puerta de enlace completamente administrada.
Si eres un desarrollador principiante de soluciones en la nube que busca adquirir experiencia práctica más allá de lo aprendido en Conceptos básicos de Google Cloud, este curso es para ti. Obtendrás experiencia práctica a través de labs que profundizan en Cloud Storage y otros servicios de aplicaciones clave, como Monitoring y Cloud Functions. Desarrollarás habilidades valiosas que se pueden aplicar a cualquier iniciativa de Google Cloud.
Obtén la insignia de habilidad introductoria Preparar datos para paneles de Looker e informes y demuestra tus habilidades para realizar las siguientes tareas: filtrar, ordenar y reorientar datos, combinar resultados de diferentes exploraciones de Looker y usar funciones y operadores para crear informes y paneles de Looker para el análisis y la visualización de datos.
Completa la insignia de habilidad introductoria del curso Obtén estadísticas a partir de datos de BigQuery y demuestra tus habilidades para realizar las siguientes actividades: escribir consultas en SQL, consultar tablas públicas, cargar datos de muestra en BigQuery, solucionar problemas de errores de sintaxis habituales con el validador de consultas en BigQuery y crear informes en Looker Studio con la conexión a datos de BigQuery.
En este curso, aprenderás sobre la ingeniería de datos en Google Cloud, los roles y las responsabilidades de los ingenieros de datos y cómo estos se corresponden con las ofertas de Google Cloud. También aprenderás sobre los métodos para enfrentar los desafíos de la ingeniería de datos.
Earn a skill badge by completing the Develop and Secure APIs with Apigee X skill badge course, where you learn how to modernize your APIs, use service accounts and Google Authentication to securely access backend services from Apigee API proxies, productize APIs using API products and developer portals, secure APIs using features like API keys, OAuth, private variables and fault handling, integrate Apigee with Google Cloud services like Pub/Sub and Cloud Logging, and call Google Cloud APIs like the Natural Language API and the Geocoding API.
This course helps you understand how to use Chronicle to properly handle security incidents.
Este curso es una introducción a Notebooks de Vertex AI, que son entornos basados en notebooks de Jupyter que proporcionan una plataforma unificada para todo el flujo de trabajo de aprendizaje automático, desde la preparación de los datos hasta la implementación y supervisión de los modelos. Se abordan los siguientes temas: (1) Los diferentes tipos de Notebooks de Vertex AI y sus funciones y (2) cómo crear y administrar Notebooks de Vertex AI.
Obtén la insignia de habilidad intermedia completando el curso Implementa canalizaciones de CI/CD en Google Cloud en el que aprenderás a usar Artifact Registry, Cloud Build y Cloud Deploy. Interactuarás con la consola de Cloud, Google Cloud CLI, Cloud Run y GKE. En este curso, aprenderás a crear canalizaciones de integración continua, almacenar y proteger artefactos, analizar vulnerabilidades, atestiguar la validez de lanzamientos aprobados. Además, obtendrás experiencia práctica en la implementación de aplicaciones tanto a GKE como a Cloud Run. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa esta insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia digital que puedes compartir con tus contactos.
El objetivo de este curso es equiparte con los conocimientos y las herramientas que necesitas para descubrir los desafíos únicos que enfrentan los equipos de MLOps cuando implementan y administran modelos de IA generativa, y explorar cómo Vertex AI fortalece a los equipos de IA para optimizar los procesos de MLOps y alcanzar el éxito en los proyectos de IA generativa.
Este curso ayuda a los participantes a crear un plan de estudios para el examen de certificación de PMLE (Professional Machine Learning Engineer). Los estudiantes conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.
Learn to build generative AI applications leveraging Firebase Genkit to call LLMs on Google Cloud and elsewhere, simplify complex applications' code and deploy your solution on Google Cloud.
Este curso breve sobre la integración de aplicaciones con modelos de Gemini 1.0 Pro en Google Cloud te ayudará a descubrir la API de Gemini y sus modelos de IA generativa. En este curso, aprenderás a acceder a los modelos de Gemini 1.0 Pro y Gemini 1.0 Pro Vision a partir del código. Podrás probar las capacidades de los modelos con instrucciones de texto, imágenes y video desde una app.
Demonstrate the ability to create and deploy generative virtual agents with natural language using Vertex AI Agent Builder and augment responses by integrating Gemini responses with third party APIs and your own data stores You will use the following technologies and Google Cloud services: Vertex AI Agent Builder Gemini Cloud Functions
In this course, you learn about Cloud Run functions, Google's serverless, fully-managed functions as a service (FaaS) product that lets you implement single-purpose function code that reponds to HTTP requests and events from your cloud infrastructure.
En este curso, aprenderá de los ingenieros y capacitadores de AA que trabajan en el desarrollo de vanguardia de las canalizaciones de AA en Google Cloud. En los primeros módulos, se abordará TensorFlow Extended (o TFX), la plataforma de aprendizaje automático de producción de Google basada en TensorFlow para la administración de canalizaciones y metadatos de AA. Aprenderá sobre los componentes y la organización de las canalizaciones con TFX. También aprenderá cómo automatizar su canalización mediante la integración y la implementación continuas, y cómo administrar ML Metadata. Luego, cambiaremos el enfoque para analizar cómo podemos automatizar y volver a usar las canalizaciones de AA en múltiples frameworks de AA, como TensorFlow, PyTorch, scikit-learn y XGBoost. Además, aprenderá a usar Cloud Composer, otra herramienta de Google Cloud, para organizar sus canalizaciones de entrenamiento continuo. Por último, aprenderá a usar MLflow para administrar el ciclo de vida completo del aprend…
This course discusses how environments are managed in Apigee hybrid, and how runtime plane components are secured. You will also learn how to deploy and debug API proxies in Apigee hybrid, and about capacity planning and scaling.
This course introduces the Cloud Run serverless platform for running applications. In this course, you learn about the fundamentals of Cloud Run, its resource model and the container lifecycle. You learn about service identities, how to control access to services, and how to develop and test your application locally before deploying it to Cloud Run. The course also teaches you how to integrate with other services on Google Cloud so you can build full-featured applications.
En este curso, los profesionales del aprendizaje automático aprenderán a utilizar las herramientas, las técnicas y las prácticas recomendadas indispensables para evaluar los modelos de IA generativa y predictiva. La evaluación de modelos es una disciplina esencial para garantizar que los sistemas de AA arrojen resultados confiables, exactos y de alto rendimiento en la producción. Los participantes obtendrán información exhaustiva sobre diversas métricas y metodologías de evaluación, además de su aplicación adecuada en diferentes tipos de modelos y tareas. En este curso, se hará énfasis en los desafíos únicos que presentan los modelos de IA generativa y se ofrecerán estrategias para abordarlos de manera eficaz. Con la plataforma de Vertex AI de Google Cloud, los participantes aprenderán a implementar los procesos sólidos de evaluación para la selección, optimización y supervisión continua de modelos.
This course introduces you to event-based applications and teaches you how to use service orchestration and choreography to coordinate microservices. Using lectures and hands-on labs, you learn how to use Workflows, Eventarc, Cloud Tasks, and Cloud Scheduler to build microservices applications on Google Cloud.
This course helps you recognize the need to implement business process automation in your organization. You learn about automation patterns and use cases, and how to use AppSheet constructs to implement automation in your app. You learn about the various features of AppSheet automation, and integrate your app with Google Workspace products. You also learn how to send email, push notifications and text messages from your app, parse documents and generate reports with AppSheet automation.
Completa la insignia de habilidad intermedia del curso Desarrolla apps de IA generativa con Gemini y Streamlit y demuestra tus habilidades para realizar las siguientes actividades: generar texto; aplicar llamadas a funciones con el SDK de Python y la API de Gemini y, además, implementar una aplicación de Streamlit con Cloud Run. Explorarás las diferentes formas en que puedes darle instrucciones a Gemini para que genere texto, usarás Cloud Shell para probar e iterar una aplicación de Streamlit y, luego, la empaquetarás como un contenedor de Docker implementado en Cloud Run.
In this course, you learn about containers and how to build, and package container images. The content in this course includes best practices for creating and securing containers, and provides an introduction to Cloud Run and Google Kubernetes Engine for application developers.
This course teaches you how to implement various capabilities that include data organization and management, application security, actions and integrations in your app using AppSheet. The course also includes topics on managing and upgrading your app, improving performance and troubleshooting issues with your app.
In this course you will learn the fundamentals of no-code app development and recognize use cases for no-code apps. The course provides an overview of the AppSheet no-code app development platform and its capabilities. You learn how to create an app with data from spreadsheets, create the app’s user experience using AppSheet views and publish the app to end users.
In this course, you learn the fundamentals of application development on Google Cloud. You learn best practices for cloud applications, and how to select compute and data options to match your application use cases. You're introduced to generative AI and how it's used to help build applications. You learn about authentication and authorization, application deployment, continuous integration and delivery, and monitoring and performance tuning for your applications running in Google Cloud. Using lectures and hands-on labs, you learn how to get started building and running applications on Google Cloud.
This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.
This quest will test your ability to create and deploy both Search applications and Chatbots using Vertex AI Agent Builder and Dialgflow. You will also be tasked with implementing a custom RAG system that uses the Discovery API to query a Vertex AI Data Store and use Gemini to answer user questions. You will use the following technologies and Google Cloud services: Vertex AI Agent Builder Search Apps Agents Gemini The assessment is divided into three main tasks: Building and deploying a Website Search App Deploying a Chatbot built using Vertex AI Agent Builder Creating a Custom Q&A Solution using the Discovery API
Organizaciones de todos los tamaños están aprovechando la potencia y flexibilidad de la nube para transformar sus operaciones. Sin embargo, administrar y escalar eficazmente los recursos en la nube puede ser una tarea compleja. En Escala con Google Cloud Operations, se exploran los conceptos fundamentales de las operaciones modernas, la confiabilidad y la resiliencia en la nube, y cómo Google Cloud puede ayudar con esas tareas. Como parte de la ruta de aprendizaje de Líder digital de Cloud, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
A medida que las organizaciones trasladan sus datos y aplicaciones a la nube, deben enfrentar nuevos desafíos de seguridad. En el curso Confianza y seguridad con Google Cloud, se exploran los conceptos básicos de la seguridad en la nube, el valor del enfoque multicapas de Google Cloud para la seguridad de la infraestructura y cómo Google se gana y mantiene la confianza de los clientes en la nube. Como parte de la ruta de aprendizaje de Líder digital de Cloud, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
Muchas empresas tradicionales usan aplicaciones y sistemas heredados que no pueden adecuarse a las expectativas de los clientes actuales. A menudo los líderes empresariales deben elegir entre mantener sus sistemas de TI anticuados o invertir en nuevos productos y servicios. En “Moderniza infraestructura y aplicaciones con Google Cloud”, se exploran estos desafíos y se ofrecen soluciones para superarlos con la tecnología de la nube. Como parte de la ruta de aprendizaje de Líder digital de Cloud, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
Obtén la insignia de habilidad intermedia completando el curso Crea e implementa soluciones de aprendizaje automático en Vertex AI, en el que aprenderás a usar la plataforma de Vertex AI de Google Cloud, así como AutoML y los servicios de entrenamiento personalizado para entrenar, evaluar, ajustar y, además, implementar modelos de aprendizaje automático. Este curso con insignia de habilidad está dirigido a ingenieros de aprendizaje automático y científicos de datos profesionales. Una insignia de habilidad es una insignia digital exclusiva otorgada por Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad para aplicar tus conocimientos en un entorno interactivo y práctico. Completa esta insignia de habilidad y el Lab de desafío de la evaluación final para recibir una insignia digital que puedes compartir en tus redes.
La inteligencia artificial (IA) y el aprendizaje automático (AA) representan una evolución importante en las tecnologías de la información que están transformando rápidamente una amplia variedad de sectores. En el curso “Innova con la Inteligencia Artificial de Google Cloud”, se exploran las maneras en que las organizaciones pueden usar la IA y el AA para transformar sus procesos empresariales. Como parte de la ruta de aprendizaje de Líder digital de Cloud, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
La tecnología de Cloud puede aportar un gran valor a una organización y, si la combinamos con datos, podemos generar aún más valor y crear nuevas experiencias para los clientes.En “Explora la transformación de datos con Google Cloud”, se explora el valor que los datos pueden aportar a una organización y las formas en que Google Cloud puede hacer que estos sean útiles y accesibles.Como parte de la ruta de aprendizaje de Líder digital de Cloud, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
Existe mucho entusiasmo sobre la tecnología de la nube y la transformación digital, pero también muchas preguntas sin respuesta. Por ejemplo: ¿Qué es la tecnología de la nube? ¿Qué significa transformación digital? ¿De qué manera puede ser útil la tecnología de la nube para la organización? ¿Cómo se puede comenzar? Si te has hecho alguna de esas preguntas, estás en el lugar indicado. En este curso, se proporciona una descripción general de los tipos de oportunidades y desafíos a los que las empresas suelen enfrentarse en su recorrido de transformación digital. Si quieres aprender sobre la tecnología de la nube para sobresalir en tu rol y ayudar a desarrollar el futuro de tu empresa, entonces este curso introductorio sobre transformación digital es para ti. Este curso es parte de la ruta de aprendizaje de Líder digital de Cloud.
In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.
This course enables system integrators and partners to understand the principles of automated migrations, plan legacy system migrations to Google Cloud leveraging G4 Platform, and execute a trial code conversion.
This course helps developers customize Chronicle and augment its abilities with third party integrations.
This course will familiarize you with the core functionality of Chronicle, including the user interface, connections, and settings.
Learn the technical aspects you need to know about Chronicle and how it can help you detect and action threats.
En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los estudiantes obtendrán experiencia práctica con la transferencia de transmisión de Vertex AI Feature Store en la capa de SDK.
En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.
This learning path aims to upskill Google Cloud partners to perform the specific tasks associated with the priority workload. Learners will discover the specific tasks in rehosting applications from on-premises to Google Cloud. It also aims to re-platform applications to run in GKE. Learners will perform the tasks of Migrating MySQL, Angular, and .NET applications from their on-premises machines to Google Cloud VM instances. Sample code will be used during the migration. Learners will complete a challenge lab that focuses on the critical steps in a rehosting exercise - copying over code for the back-end, front-end, and middle-tier applications and validating that the applications have been migrated correctly. Learners will also complete a challenge lab that focuses on the critical steps in a re-platforming exercise - creating back-end, front-end, and middle-tier Docker images, deploying the same in the GKE cluster, and validating that the application has been deployed correctly.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
This course aims to upskill Google Cloud partners to perform specific tasks in rehosting applications from on-premise to Google Cloud. It also aims to re-platform applications to run in GKE. Learners will perform the tasks of Migrating MySQL, Angular, and Java applications from their on-premise machines to Google Cloud VM instances. Sample code will be used during the migration.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
En este curso, analizaremos los componentes y las prácticas recomendadas de la creación de sistemas de AA de alto rendimiento en entornos de producción. Veremos algunas de las consideraciones más comunes tras la creación de estos sistemas, p. ej., entrenamiento estático, entrenamiento dinámico, inferencia estática, inferencia dinámica, TensorFlow distribuido y TPU. Este curso se enfoca en explorar las características que conforman un buen sistema de AA más allá de su capacidad de realizar predicciones correctas.
En este curso, se te enseña a crear un modelo de generación de leyendas de imágenes con el aprendizaje profundo. Aprenderás sobre los distintos componentes de los modelos de generación de leyendas de imágenes, como el codificador y el decodificador, y cómo entrenar y evaluar tu modelo. Al final del curso, podrás crear tus propios modelos y usarlos para generar leyendas de imágenes.
En este curso, se presentan la arquitectura de transformadores y el modelo de Bidirectional Encoder Representations from Transformers (BERT). Aprenderás sobre los componentes principales de la arquitectura de transformadores, como el mecanismo de autoatención, y cómo se usa para crear el modelo BERT. También aprenderás sobre las diferentes tareas para las que puede usarse BERT, como la clasificación de texto, la respuesta de preguntas y la inferencia de lenguaje natural. Tardarás aproximadamente 45 minutos en completar este curso.
En este curso, se brinda un resumen de la arquitectura de codificador-decodificador, una arquitectura de aprendizaje automático importante y potente para realizar tareas de secuencia por secuencia, como las de traducción automática, resúmenes de texto y respuestas a preguntas. Aprenderás sobre los componentes principales de la arquitectura de codificador-decodificador y cómo entrenar y entregar estos modelos. En la explicación del lab, programarás una implementación sencilla de la arquitectura de codificador-decodificador en TensorFlow para generar poemas desde un comienzo.
This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.
En este curso, se aplica un enfoque real en el flujo de trabajo del AA a través de un caso de éxito. Un equipo de AA trabaja con varios requisitos empresariales y casos de uso de AA. El equipo debe comprender las herramientas necesarias para la administración de los datos y considerar el mejor enfoque para su procesamiento previo. Al equipo se le presentan tres opciones con las que puede crear modelos de AA para dos casos de uso. En el curso, se explica por qué el equipo usará AutoML, BigQuery ML o entrenamiento personalizado para lograr sus objetivos.
Este curso es una introducción al mecanismo de atención, una potente técnica que permite a las redes neuronales enfocarse en partes específicas de una secuencia de entrada. Sabrás cómo funciona la atención y cómo puede utilizarse para mejorar el rendimiento de diversas tareas de aprendizaje automático, como la traducción automática, el resumen de textos y la respuesta a preguntas.
En este curso, se exploran los beneficios de utilizar Vertex AI Feature Store, cómo mejorar la exactitud de los modelos de AA y cómo descubrir cuáles columnas de datos producen los atributos más útiles. El curso también incluye contenido y labs sobre la ingeniería de atributos en los que se usan BigQuery ML, Keras y TensorFlow.
En este curso, se explica cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la exactitud de los modelos de AA y cómo escribir modelos de AA para uso escalado.
El curso comienza con un debate sobre los datos: cómo mejorar su calidad y cómo realizar análisis exploratorios de ellos. Describimos Vertex AI AutoML y cómo crear, entrenar e implementar un modelo de AA sin escribir una sola línea de código. Conocerás los beneficios de BigQuery ML. Luego, se analiza cómo optimizar un modelo de aprendizaje automático (AA) y cómo la generalización y el muestreo pueden ayudar a evaluar la calidad de los modelos de AA para el entrenamiento personalizado.
En este curso, descubrirás cómo Gemini, un colaborador potenciado por IA generativa de Google Cloud, te ayudará a usar los productos y servicios de Google para desarrollar, probar, implementar y administrar aplicaciones. Con la ayuda de Gemini, aprenderás a desarrollar y compilar una aplicación web, corregir errores de la aplicación, desarrollar pruebas y consultar datos. A través de un lab práctico, comprobarás cómo Gemini mejora el ciclo de vida del desarrollo de software (SDLC). Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
En este curso, aprenderás cómo Gemini, un colaborador de Google Cloud potenciado por IA generativa, ayuda a los ingenieros a administrar infraestructuras. Descubrirás cómo darle instrucciones a Gemini para que encuentre y comprenda registros de aplicaciones, investigue cómo crear un entorno de compilación y cree un clúster de GKE. A través de un lab práctico, comprobarás cómo Gemini mejora el flujo de trabajo de DevOps. Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
En este curso, descubrirás cómo Gemini, un colaborador potenciado por IA generativa de Google Cloud, ayuda a los ingenieros de redes a crear, actualizar y mantener redes de VPC. Aprenderás a darle instrucciones a Gemini para que te brinde orientación específica sobre tus tareas de redes, mucho más detallada que la que recibirías de un motor de búsqueda. A través de un lab práctico, comprobarás cómo Gemini te facilita trabajar con las redes de VPC de Google Cloud. Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
En este curso, descubrirás cómo Gemini, un colaborador potenciado por IA generativa de Google Cloud, te ayudará a proteger tu entorno y tus recursos en la nube. Aprenderás a implementar cargas de trabajo de ejemplo en un entorno de Google Cloud y a identificar y corregir los parámetros de configuración de seguridad incorrectos con Gemini. A través de un lab práctico, comprobarás cómo Gemini mejora tu postura de seguridad en la nube. Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
This 1-week, accelerated on-demand course builds upon Google Cloud Platform Big Data and Machine Learning Fundamentals. Through a combination of video lectures, demonstrations, and hands-on labs, you'll learn to build streaming data pipelines using Google cloud Pub/Sub and Dataflow to enable real-time decision making. You will also learn how to build dashboards to render tailored output for various stakeholder audiences.
En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.
En este curso, descubrirás cómo Gemini, un colaborador potenciado por IA generativa de Google Cloud, ayuda a analizar los datos de los clientes y predecir las ventas de productos. También aprenderás a identificar, categorizar y desarrollar los clientes nuevos usando datos de clientes en BigQuery. A través de labs prácticos, comprobarás cómo Gemini mejora los flujos de trabajo de análisis de datos y aprendizaje automático. Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
En esta última parte de la serie de cursos de Dataflow, presentaremos los componentes del modelo operativo de Dataflow. Examinaremos las herramientas y técnicas que permiten solucionar problemas y optimizar el rendimiento de las canalizaciones. Luego, revisaremos las prácticas recomendadas de las pruebas, la implementación y la confiabilidad en relación con las canalizaciones de Dataflow. Concluiremos con una revisión de las plantillas, que facilitan el ajuste de escala de las canalizaciones de Dataflow para organizaciones con cientos de usuarios. Estas clases asegurarán que su plataforma de datos sea estable y resiliente ante circunstancias inesperadas.
En este curso, aprenderás cómo Gemini, un colaborador de Google Cloud potenciado por IA generativa, ayuda a los administradores a aprovisionar infraestructuras. Descubrirás cómo darle instrucciones a Gemini para que explique infraestructuras, implemente clústeres de GKE y actualice la infraestructura existente. A través de un lab práctico, comprobarás cómo Gemini mejora el flujo de trabajo de implementación de GKE. Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
Completa el curso con insignia de habilidad introductoria Crea una malla de datos con Dataplex y demuestra tus habilidades para crear una malla de datos con Dataplex y facilitar la seguridad, la administración y el descubrimiento de datos en Google Cloud. Practicarás y pondrás a prueba tus habilidades para etiquetar recursos, asignar roles de IAM y evaluar la calidad de los datos en Dataplex.
Obtén la insignia de habilidad intermedia Ingeniería de datos para crear modelos predictivos con BigQuery ML y demuestra tus capacidades para crear canalizaciones de transformación de datos en BigQuery con Dataprep de Trifacta; usar Cloud Storage, Dataflow y BigQuery para crear flujos de trabajo de extracción, transformación y carga (ETL), y crear modelos de aprendizaje automático con BigQuery ML.
Completa la insignia de habilidad intermedia Crea un almacén de datos con BigQuery para demostrar tus habilidades para realizar las siguientes actividades: unir datos para crear tablas nuevas, solucionar problemas de uniones, agregar datos a uniones, crear tablas particionadas por fecha, y trabajar con JSON, arrays y structs en BigQuery. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa el curso con insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia digital que puedes compartir con tus contactos.
Completa la insignia de habilidad introductoria Prepara datos para las APIs de AA en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: limpiar datos con Dataprep de Trifacta, ejecutar canalizaciones de datos en Dataflow, crear clústeres y ejecutar trabajos de Apache Spark en Dataproc y llamar a APIs de AA, como la API de Cloud Natural Language, la API de Google Cloud Speech-to-Text y la API de Video Intelligence.
Completa la insignia de habilidad del curso introductorio Diseño de instrucciones en Vertex AI y demuestra tus habilidades para realizar las siguientes actividades: ingeniería de instrucciones, análisis de imágenes y aplicación de técnicas generativas multimodales en Vertex AI. Descubre cómo crear instrucciones eficaces, guía las respuestas de la IA generativa y aplica modelos de Gemini en situaciones de marketing de la vida real.
En esta segunda parte de la serie de cursos sobre Dataflow, analizaremos en profundidad el desarrollo de canalizaciones con el SDK de Beam. Comenzaremos con un repaso de los conceptos de Apache Beam. A continuación, analizaremos el procesamiento de datos de transmisión con ventanas, marcas de agua y activadores. Luego, revisaremos las opciones de fuentes y receptores en sus canalizaciones, los esquemas para expresar datos estructurados y cómo realizar transformaciones con estado mediante las API de State y de Timer. Después, revisaremos las prácticas recomendadas que ayudan a maximizar el rendimiento de las canalizaciones. Al final del curso, presentaremos SQL y Dataframes para representar su lógica empresarial en Beam y cómo desarrollar canalizaciones de forma iterativa con notebooks de Beam.
Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.
La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.
El procesamiento de datos de transmisión es cada vez más popular, puesto que permite a las empresas obtener métricas en tiempo real sobre las operaciones comerciales. Este curso aborda cómo crear canalizaciones de datos de transmisión en Google Cloud. Pub/Sub se describe para manejar los datos de transmisión entrantes. El curso también aborda cómo aplicar agregaciones y transformaciones a los datos de transmisión con Dataflow y cómo almacenar los registros procesados en BigQuery o Bigtable para analizarlos. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos de transmisión en Google Cloud con QwikLabs.
Las canalizaciones de datos suelen realizarse según uno de los paradigmas extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, grafos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.
In this course, you learn how to create APIs that utilize multiple services and how you can use custom code on Apigee. You will also learn about fault handling, and how to share logic between proxies. You learn about traffic management and caching. You also create a developer portal, and publish your API to the portal. You learn about logging and analytics, as well as CI/CD and the different deployment models supported by Apigee. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform.This is the third and final course of the Developing APIs with Google Cloud's Apigee API Platform course series.
Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.
Los dos componentes clave de cualquier canalización de datos son los data lakes y los almacenes de datos. En este curso, se destacan los casos de uso de cada tipo de almacenamiento y se analizan en profundidad las soluciones de data lakes y almacenes disponibles en Google Cloud con detalles técnicos. Además, en este curso, se describen el rol del ingeniero en datos, los beneficios de las canalizaciones de datos exitosas para las operaciones comerciales y por qué la ingeniería de datos debe realizarse en un entorno de nube. Este el primer curso de la serie Ingeniería de datos en Google Cloud. Después de completar este curso, inscríbete en el curso Creación de flujos de procesamiento de datos por lotes en Google Cloud.
Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.
Completa la insignia de habilidad intermedia Inspecciona documentos enriquecidos con Gemini multimodal y RAG multimodal para demostrar tus habilidades para realizar las siguientes actividades: usar instrucciones multimodales para extraer información de datos visuales y de texto, generar la descripción de un video y recuperar información adicional más allá del video utilizando la multimodalidad con Gemini; crear metadatos de documentos que contengan imágenes y texto, obtener todos los fragmentos de texto relevantes e imprimir las citas con la generación mejorada por recuperación (RAG) multimodal con Gemini. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa este curso de insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia que puedes com…
In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.
In this course, you learn how to secure your APIs. You explore the security concerns you will encounter for your APIs. You learn about OAuth, the primary authorization method for REST APIs. You will learn about JSON Web Tokens (JWTs) and federated security. You also learn about securing against malicious requests, safely sending requests across a public network, and how to secure your data for users of Apigee. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform. This is the second course of the Developing APIs with Google Cloud's Apigee API Platform series. After completing this course, enroll in the API Development on Google Cloud's Apigee API Platform course.
In this course, you learn how to design APIs, and how to use OpenAPI specifications to document them. You learn about the API life cycle, and how the Apigee API platform helps you manage all aspects of the life cycle. You learn about how APIs can be designed using API proxies, and how APIs are packaged as API products to be used by app developers. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform. This is the first course of the Developing APIs with Google Cloud's Apigee API Platform series. After completing this course, enroll in the API Security on Google Cloud's Apigee API Platform course.
Learn to use LangChain to call Google Cloud LLMs and Generative AI Services and Datastores to simplify complex applications' code.
Learn how Gemini can revolutionize your ability to develop applications! This course helps developers go beyond the basics and learn how to integrate Gemini into their workflows.
Delve into the power of multimodal AI with this project-based course using Gemini. Master essential techniques and build advanced applications. You will: - Experiment with multimodal use cases to expand application possibilities - Implement recommendation systems that combine suggestions with clear reasoning - Design a powerful document search engine using multimodal RAG methods Important Disclaimer: Please note that these labs are under active development. Functionality may occasionally change or break unexpectedly, and content might be removed or altered without notice. By proceeding with this course, you acknowledge this potential disruption.
Unlock the power of Google Cloud's cutting-edge Vertex AI Gemini API to craft innovative multimodal applications. This hands-on course delves into the integration of the Vertex AI SDK for Python, guiding you through the generation of sophisticated responses powered by the Gemini Pro and Gemini Pro Vision models. Get ready to build, deploy, and harness the transformative capabilities of multimodal AI within your own projects. Important Disclaimer: Please note that these labs are under active development. Functionality may occasionally change or break unexpectedly, and content might be removed or altered without notice. By proceeding with this course, you acknowledge this potential disruption.
Get hands-on with the Gemini Pro and Gemini Pro Vision models through our new labs. This course gives you a unique chance to explore these powerful AI tools while our training content is still in development. Learn to interact with the models using the Vertex AI Gemini API and cURL commands, and help us create the best possible learning experience around this technology. Important Disclaimer: Please note that these labs are under active development. Functionality may occasionally change or break unexpectedly, and content might be removed or altered without notice. By proceeding with this course, you acknowledge this potential disruption.
This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.
En este curso, explorarás tecnologías, herramientas y aplicaciones de búsqueda potenciadas por IA. Aprende sobre las búsquedas semánticas utilizando embeddings de vectores, acerca de las búsquedas híbridas combinando enfoques semánticos y de palabras clave, y sobre la generación mejorada por recuperación (RAG) minimizando las alucinaciones como un agente de IA fundamentado. Adquiere experiencia práctica con Vector Search de Vertex AI para desarrollar tu motor de búsqueda inteligente.
This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.
This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.
(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.
En este curso, se presenta Vertex AI Studio, una herramienta para interactuar con modelos de IA generativa, crear prototipos de ideas de negocio y llevarlas a producción. A través de un caso de uso envolvente, lecciones atractivas y un lab práctico, explorarás el ciclo de vida desde la instrucción hasta el producto y aprenderás cómo aprovechar Vertex AI Studio para aplicaciones multimodales de Gemini, diseño de instrucciones, ingeniería de instrucciones y ajuste de modelos. El objetivo es permitirte desbloquear el potencial de la IA generativa en tus proyectos con Vertex AI Studio.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
This content is deprecated. Please see the latest version of the course, here.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA responsable, por qué es importante y cómo la implementa Google en sus productos. También se presentan los 7 principios de la IA de Google.
Este es un curso introductorio de microaprendizaje en el que se explora qué son los modelos de lenguaje grandes (LLM), sus casos de uso y cómo se puede utilizar el ajuste de instrucciones para mejorar el rendimiento de los LLM. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
En este curso, aprenderás cómo Gemini, un colaborador potenciado por IA generativa de Google Cloud, ayuda a los desarrolladores a compilar aplicaciones. Aprenderás a darle instrucciones a Gemini para que explique códigos, recomiende servicios de Google Cloud y genere código para tus aplicaciones. A través de un lab práctico, comprobarás cómo Gemini mejora el flujo de trabajo de desarrollo de aplicaciones. Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use Generative AI App Builder to integrate enterprise-grade generative AI search.
A medida que aumenta el uso empresarial de la inteligencia artificial y el aprendizaje automático, también crece la importancia de implementarlo responsablemente. El desafío para muchas personas es que hablar sobre la IA responsable puede ser más fácil que aplicarla. Si te interesa aprender cómo poner en funcionamiento la IA responsable en tu organización, este curso es para ti. En este curso, aprenderás cómo Google Cloud aplica estos principios en la actualidad, junto con las prácticas recomendadas y las lecciones aprendidas, para usarlos como marco de trabajo de modo que puedas crear tu propio enfoque de IA responsable.
En este curso de nivel principiante, aprenderás sobre el flujo de trabajo de análisis de datos en Google Cloud y las herramientas que puedes utilizar para explorar, analizar y visualizar datos, y compartir tus hallazgos con las partes interesadas. A través de un caso de estudio y labs prácticos, lecciones, cuestionarios y demostraciones, verás cómo limpiar conjuntos de datos sin procesar para generar visualizaciones y paneles más eficaces. Si ya trabajas con datos y quieres saber cómo tener éxito en Google Cloud, o si buscas avanzar en tu profesión, este curso te ayudará. Prácticamente cualquier persona que realice o use análisis de datos en el trabajo puede beneficiarse del curso.
En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.
En este curso acelerado a pedido, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud, con un enfoque en Compute Engine. Mediante una serie de clases por video, demostraciones y labs prácticos, los participantes pueden explorar y, también, implementar elementos de soluciones, incluidos componentes de infraestructura, como redes, sistemas y servicios de aplicaciones. En este curso, también se aborda la implementación de soluciones prácticas, incluidas las claves de encriptación proporcionadas por el cliente, la administración de seguridad y accesos, las cuotas y la facturación, y la supervisión de recursos.
En este curso acelerado on demand, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud, con un enfoque en Compute Engine. Mediante una serie de clases por video, demostraciones y labs prácticos, los participantes pueden explorar y, también, implementar elementos de soluciones, incluidos componentes de infraestructura, como redes, máquinas virtuales y servicios de aplicaciones. Aprenderás a usar Google Cloud mediante la consola y Cloud Shell. También te familiarizarás con la función de un arquitecto de nube, enfoques para el diseño de la infraestructura y la configuración de redes virtuales con una nube privada virtual (VPC), proyectos, redes, subredes, direcciones IP, rutas y reglas de firewall.
En este curso acelerado a pedido, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud. A través de una combinación de clases por video, demostraciones y labs prácticos, los participantes exploran y, también, implementan elementos de las soluciones, como la interconexión segura de redes, el balanceo de cargas, el ajuste de escala automático, la automatización de la infraestructura y los servicios administrados.
Completa la insignia de habilidad introductoria Supervisa y registra con Google Cloud Observability y demuestra tus habilidades para hacer lo siguiente: supervisar máquinas virtuales en Compute Engine; usar Cloud Monitoring para supervisar múltiples proyectos; expandir las capacidades de supervisión y registro a Cloud Functions; crear y enviar métricas de aplicaciones personalizadas, y configurar alertas de Cloud Monitoring en función de métricas personalizadas.
Completa la insignia de habilidad intermedia del curso Implementa flujos de trabajo de DevOps en Google Cloud para demostrar tus capacidades para hacer lo siguiente: crear repositorios de Git con Cloud Source Repositories; lanzar, administrar y escalar implementaciones en Google Kubernetes Engine (GKE), y diseñar canalizaciones de CI/CD que automatizan la compilación y la implementación de imágenes de contenedor en GKE. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa este curso de insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia que puedes compartir con tu red.
Course two of the Architecting Hybrid Cloud with Anthos series prepares students to operate and observe Anthos environments. Through presentations and hands-on labs, participants explore adjusting existing clusters, setting up advanced traffic routing policies, securing communication across workloads, and observing clusters in Anthos. This course is a continuation of course one, Multi-Cluster, Multi-Cloud with Anthos, and assumes direct experience with the topics covered in that course.
Completa la insignia de habilidad intermedia Crea una infraestructura con Terraform en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: aplicar los principios de la infraestructura como código (IaC) con Terraform; aprovisionar y administrar recursos de Google Cloud con parámetros de configuración de Terraform; realizar una administración de estado eficaz (local y remota) y modularizar el código de Terraform para la reutilización y la organización.
En este curso, se proporciona una introducción al uso de Terraform para Google Cloud. Permite que los participantes describan cómo se puede usar Terraform para implementar infraestructura como código y aplicar algunas de sus características y funcionalidades clave para crear y administrar la infraestructura de Google Cloud. Además, obtendrán experiencia práctica en la compilación y administración de recursos de Google Cloud con Terraform.
En este curso, los estudiantes aprenderán a crear soluciones altamente confiables y eficientes en Google Cloud usando patrones de diseño comprobados. Es la continuación de los cursos Diseño de arquitecturas con Google Compute Engine o Diseño de arquitecturas con Google Kubernetes Engine. Se presupone que los equipos tienen experiencia práctica con las tecnologías que se abordan en cualquiera de esos cursos. A través de una serie de presentaciones, actividades de diseño y labs prácticos, los participantes aprenderán a definir y equilibrar los requisitos comerciales y técnicos para diseñar implementaciones de Google Cloud altamente confiables y disponibles, así como seguras y rentables.
En muchas organizaciones de TI, los incentivos no se alinean con los desarrolladores, que buscan agilidad, y los operadores, que se enfocan en la estabilidad. La ingeniería de confiabilidad de sitios (SRE) es el enfoque que usa Google para alinear los incentivos entre los equipos de desarrollo y operaciones, y brindar asistencia en la producción de servicios fundamentales. Adoptar las prácticas técnicas y culturales de la SRE puede ayudar a mejorar la colaboración entre las empresas y sus departamentos de TI. En este curso se presentan las prácticas clave de la SRE de Google y la función importante que tienen los líderes empresariales y de TI en el éxito de la adopción organizacional de este enfoque.
Obtén la insignia de habilidad intermedia Implementa aplicaciones de Kubernetes en Google Cloud y demuestra tus habilidades para configurar y crear imágenes de contenedores de Docker, crear y administrar clústeres de Google Kubernetes Engine (GKE), utilizar kubectl para la administración eficiente de clústeres y, además, implementar aplicaciones de Kubernetes con prácticas de entrega continua (CD) sólidas.
Completa la insignia de habilidad intermedia del curso Desarrollar apps sin servidores con Firebase y demuestra tus capacidades para hacer lo siguiente: diseñar arquitecturas y compilar aplicaciones web sin servidores con Firebase; usar Firestore para administrar bases de datos; automatizar procesos de implementación con Cloud Build, e integrar la funcionalidad Asistente de Google en tus aplicaciones.
Completa la insignia de habilidad intermedia del curso Desarrolla aplicaciones sin servidores en Cloud Run y demuestra tus capacidades para hacer lo siguiente: integrar Cloud Run en Cloud Storage para la administración de datos; diseñar sistemas asíncronos resilientes con Cloud Run y Pub/Sub; construir puertas de enlace de la API de REST potenciadas por Cloud Run, y crear e implementar servicios en Cloud Run.
Course four of the Anthos series prepares students to consider multiple approaches for modernizing applications and services within Anthos environments. Topics include optimizing workloads on serverless platforms and migrating workloads to Anthos. This course is a continuation of course three, Anthos on Bare Metal, and assumes direct experience with the topics covered in that course.
Te damos la bienvenida al curso Introducción a Google Kubernetes Engine. Si te interesa Kubernetes, una capa de software ubicada entre tus aplicaciones y la infraestructura de tu hardware, estás en el lugar correcto. Google Kubernetes Engine te ofrece Kubernetes como un servicio administrado en Google Cloud. El objetivo de este curso es presentar los conceptos básicos de Google Kubernetes Engine o GKE, como se conoce comúnmente, y cómo alojar aplicaciones en contenedores y ejecutarlas en Google Cloud. El curso comienza con una introducción básica a Google Cloud, seguida de una descripción general de los contenedores y Kubernetes, la arquitectura de Kubernetes y las operaciones de esta plataforma.
This course introduces you to fundamentals, practices, capabilities and tools applicable to modern cloud-native application development using Google Cloud Run. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to on Google Cloud using Cloud Run.design, implement, deploy, secure, manage, and scale applications
Course Description:
Course Description:
En este curso, los desarrolladores de aplicaciones aprenderán a diseñar y desarrollar aplicaciones nativas de la nube que integren perfectamente los servicios administrados de Google Cloud. A través de una serie de presentaciones, demostraciones y labs prácticos, los participantes aprenderán a aplicar las prácticas recomendadas del desarrollo de aplicaciones y usar los servicios de almacenamiento de Google Cloud apropiados para el almacenamiento de objetos, datos relacionales, almacenamiento en caché y análisis. Es obligatorio completar una versión de cada lab. Los labs están disponibles en Node.js y, en la mayoría de los casos, también en Python o Java. Puedes completar cada lab en el lenguaje que prefieras. Este es el primer curso de la serie Developing Applications with Google Cloud. Después de completarlo, inscríbete en el curso Securing and Integrating Components of your Application.
If you want to take your Google Cloud networking skills to the next level, look no further. This course is composed of labs that cover real-life use cases and it will teach you best practices for overcoming common networking bottlenecks. From getting hands-on practice with testing and improving network performance, to integrating high-throughput VPNs and networking tiers, Network Performance and Optimization is an essential course for Google Cloud developers who are looking to double down on application speed and robustness.
Para ganar una insignia de habilidad, completa el curso Configura un entorno de desarrollo de apps en Google Cloud. Allí aprenderás a crear y conectar una infraestructura de nube centrada en el almacenamiento usando las capacidades básicas de las siguientes tecnologías: Cloud Storage, Identity and Access Management, Cloud Functions y Pub/Sub.
Completa la insignia de habilidad introductoria Implementa el balanceo de cargas en Compute Engine y demuestra tus habilidades para realizar las siguientes actividades: escribir comandos de gcloud y usar Cloud Shell, crear e implementar máquinas virtuales en Compute Engine, y configurar balanceadores de cargas de red y HTTP. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa esta insignia de habilidad y el Lab de desafío de la evaluación final para recibir una insignia que puedes compartir con tus contactos.
En esta Quest de nivel básico, adquirirá experiencia práctica en las herramientas y los servicios fundamentales de Google Cloud Platform. GCP Essentials es la primera Quest recomendada para el estudiante de Google Cloud. Ingresará con poco o ningún conocimiento previo sobre la nube, y saldrá con experiencia práctica que podrá aplicar a su primer proyecto de GCP. Desde la escritura de comandos de Cloud Shell y la implementación de su primera máquina virtual hasta la ejecución de aplicaciones en Kubernetes Engine o mediante el balanceo de cargas, GCP Essentials es una excelente introducción a las funciones básicas de la plataforma. En los videos de 1 minuto, se le explicarán los conceptos clave de cada lab.
Las herramientas de redes son un tema clave de la computación en la nube. Es la tecnología subyacente de Google Cloud y conecta todos tus recursos y servicios entre sí. En este curso, se abordarán los servicios esenciales de herramientas de redes de Google Cloud y obtendrás experiencia práctica con herramientas especializadas para desarrollar redes consolidadas. Desde los pormenores de las VPC hasta la creación de balanceadores de cargas de nivel empresarial, Automatiza la implementación y administra el tráfico en una red de Google Cloud te dará la experiencia práctica necesaria para empezar a crear redes sólidas de inmediato.
This course helps you structure your preparation for the Professional Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.
Este curso de capacitación de autoaprendizaje brinda a los participantes conocimientos generales de los controles y las técnicas de seguridad en Google Cloud. Mediante conferencias, demostraciones y labs prácticos grabados, los participantes exploran y, luego, implementan los componentes de una solución segura de Google Cloud, incluidas tecnologías de control de acceso de Cloud Storage, llaves de seguridad, Claves de encriptación proporcionadas por el cliente, controles de acceso a la API, alcance, VMs protegidas, encriptación y URLs firmadas. También se aborda la protección de entornos de Kubernetes.
En este curso de capacitación de autoaprendizaje, los participantes aprenderán cuáles son las mitigaciones de los ataques a varios puntos de una infraestructura basada en Google Cloud, incluidos los ataques de denegación de servicio distribuido, los ataques de suplantación de identidad (phishing) y las amenazas relacionadas con la clasificación y el uso de contenido. También aprenderán sobre Security Command Center, los registros de auditoría y los registros de Cloud, y sobre el uso de Forseti para ver el cumplimiento general de las políticas de seguridad de tu organización.
Este curso de capacitación de autoaprendizaje brinda a los participantes conocimientos generales de los controles y las técnicas de seguridad en Google Cloud. A través de clases grabadas, demostraciones y labs prácticos, los participantes exploran y también implementan los componentes de una solución de Google Cloud segura, incluidos Cloud Identity, Resource Manager, Cloud IAM, firewalls de nube privada virtual, Cloud Load Balancing, intercambio de tráfico de Cloud, Cloud Interconnect y Controles del servicio de VPC. Este es el primer curso de la serie Seguridad en Google Cloud. Después de completarlo, inscríbete en el curso Security Best Practices in Google Cloud.
Aspectos básicos de Google Cloud: Infraestructura principal presenta conceptos y terminología importantes para trabajar con Google Cloud. Mediante videos y labs prácticos, en este curso se presentan y comparan muchos de los servicios de procesamiento y almacenamiento de Google Cloud, junto con importantes recursos y herramientas de administración de políticas.
Networking in Google Cloud es una serie de cursos de 6 partes. Te damos la bienvenida al primero de nuestra serie de seis cursos, Networking in Google Cloud: Fundamentals. En este curso, se ofrece una descripción general completa de los conceptos de redes esenciales, incluidos los aspectos básicos de las redes, las nubes privadas virtuales (VPC) y el uso compartido de redes de VPC. Además, en el curso se abordan las técnicas de registro y supervisión de red.
Te damos la bienvenida al segundo curso de la serie Networking in Google Cloud: Routing and Addressing. En este curso, cubriremos los conceptos centrales del enrutamiento y el direccionamiento, que son importantes para las funciones de redes de Google Cloud. En el módulo uno, se explorarán el enrutamiento y el direccionamiento de redes en Google Cloud revisando varios componentes básicos, como el enrutamiento de IPv4, la inclusión de tus propias direcciones IP y cómo configurar Cloud DNS. En el módulo dos, veremos las opciones de conexión privada explorando casos de uso y métodos para acceder a Google y otros servicios de forma privada con direcciones IP internas. Al final del curso, comprenderás cómo enrutar y direccionar con eficacia tu tráfico de red en Google Cloud.
Completa la insignia de habilidad intermedia del curso Implementa los aspectos básicos de seguridad en la nube en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: crear y asignar roles con Identity and Access Management (IAM); crear y administrar cuentas de servicio; habilitar la conectividad privada en las redes de nube privada virtual (VPC); restringir el acceso a las aplicaciones con Identity-Aware Proxy; administrar claves y datos encriptados con Cloud Key Management Service (KMS) y crear un clúster privado de Kubernetes.
Prepárate para usar Anthos. Esta colección de labs prácticos recomendados centrada en Google Kubernetes Engine se enfoca en la seguridad a gran escala para implementar y administrar entornos de GKE para producción. En específico, abarca el control de acceso basado en roles, el endurecimiento, las herramientas de redes de VPC y la autorización binaria.
Obtén una insignia de habilidad completando el curso Crea una red de Google Cloud segura, en el que aprenderás sobre distintos recursos relacionados con las redes para crear, escalar y proteger tus aplicaciones en Google Cloud.
En este curso, se enseñan a los participantes técnicas para supervisar y mejorar el rendimiento de la infraestructura y las aplicaciones en Google Cloud. Con una combinación de presentaciones, demostraciones, labs prácticos y casos de éxito del mundo real, los asistentes adquieren experiencia para supervisar la pila completa, administrar y analizar registros en tiempo real, depurar código en producción, hacer un seguimiento de los cuellos de botella en el rendimiento de las aplicaciones y crear perfiles de uso de CPU y memoria.
This course helps learners prepare for the Professional Cloud Security Engineer (PCSE) Certification exam. Learners will be exposed to and engage with exam topics through a series of lectures, diagnostic questions, and knowledge checks. After completing this course, learners will have a personalized workbook that will guide them through the rest of their certification readiness journey.