가입 로그인

Tarkesh Pujari

회원 가입일: 2024

골드 리그

20700포인트
생성형 AI를 위한 머신러닝 작업(MLOps) Earned 1월 1, 2025 EST
대규모 언어 모델 소개 Earned 1월 1, 2025 EST
생성형 AI 소개 Earned 1월 1, 2025 EST
Vertex AI에서 노트북 작업하기 Earned 12월 27, 2024 EST
Google Kubernetes Engine 시작하기 Earned 11월 18, 2024 EST
신뢰할 수 있는 Google Cloud 인프라: 설계 및 프로세스 Earned 11월 17, 2024 EST
유연한 Google Cloud 인프라: 확장 및 자동화 Earned 11월 10, 2024 EST
필수 Google Cloud 인프라: 핵심 서비스 Earned 11월 8, 2024 EST
필수 Google Cloud 인프라: 기초 Earned 11월 6, 2024 EST
Google Cloud 기초: 핵심 인프라 Earned 11월 4, 2024 EST
프로페셔널 머신러닝 엔지니어 학습 가이드 Earned 10월 22, 2024 EDT
Hybrid Cloud Infrastructure Foundations with Anthos Earned 10월 22, 2024 EDT
Google Cloud의 AI 및 머신러닝 소개 Earned 10월 13, 2024 EDT

이 과정에서는 생성형 AI 모델을 배포하고 관리할 때 MLOps팀이 직면하는 고유한 과제를 파악하는 데 필요한 지식과 도구를 제공하고 Vertex AI가 어떻게 AI팀이 MLOps 프로세스를 간소화하고 생성형 AI 프로젝트에서 성공을 거둘 수 있도록 지원하는지 살펴봅니다.

자세히 알아보기

이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

이 과정은 데이터 준비부터 모델 배포와 모니터링까지 전체 머신러닝 워크플로를 위한 통합 플랫폼을 제공하는 Jupyter 노트북 기반 환경인 Vertex AI Notebooks를 소개합니다. 이 과정에서는 (1) 다양한 유형의 Vertex AI Notebooks와 그 특징, (2) Vertex AI Notebooks를 만들고 관리하는 방법을 다룹니다.

자세히 알아보기

Google Kubernetes Engine 시작하기 과정에 오신 것을 환영합니다. 애플리케이션과 하드웨어 인프라 사이에 위치하는 소프트웨어 레이어인 Kubernetes에 관심이 있으시다면 잘 찾아오셨습니다. Google Kubernetes Engine을 사용하면 Kubernetes를 Google Cloud에서 관리형 서비스로 사용할 수 있습니다. 이 과정의 목표는 흔히 GKE로 불리는 Google Kubernetes Engine의 기본사항을 소개하고 Google Cloud에서 애플리케이션을 컨테이너화하고 실행하는 방법을 설명하는 것입니다. 이 과정에서는 먼저 Google Cloud에 대해 기본적인 사항을 소개한 후 이어서 컨테이너 및 Kubernetes, Kubernetes 아키텍처, Kubernetes 작업에 대해 간략히 설명합니다.

자세히 알아보기

이 과정에서는 학습자가 검증된 설계 패턴을 사용하여 Google Cloud에서 고도로 안정적이고 효율적인 솔루션을 빌드하는 데 필요한 역량을 기를 수 있습니다. 'Google Compute Engine으로 설계하기' 또는 'Google Kubernetes Engine으로 설계하기' 과정에서 이어지는 내용이며, 학습자가 두 과정에서 다루는 기술을 실무에서 사용해 본 경험이 있다는 전제로 진행됩니다. 학습자는 프레젠테이션, 설계 활동, 실무형 실습을 통해 고도로 안정적이고 안전하고 비용 효율적이며 가용성이 높은 Google Cloud 배포를 설계하는 데 필요한 비즈니스 요구사항과 기술 요구사항을 정의하고 이 사이의 적절한 균형을 유지하는 방법을 익힐 수 있습니다.

자세히 알아보기

이 속성 주문형 과정에서는 참가자에게 Google Cloud에서 제공하는 포괄적이고 유연한 인프라 및 플랫폼 서비스를 소개합니다. 참가자는 동영상 강의, 데모, 실무형 실습이 결합된 이 과정을 통해 안전한 네트워크 상호 연결, 부하 분산, 자동 확장, 인프라 자동화, 관리형 서비스가 포함된 솔루션 요소를 살펴보고 배포할 수 있습니다.

자세히 알아보기

이 속성 주문형 과정은 참가자에게 Google Cloud에서 제공하는 포괄적이고 유연한 인프라 및 플랫폼 서비스를 Compute Engine을 중심으로 소개합니다. 참가자는 동영상 강의, 데모, 실무형 실습을 통해 네트워크, 시스템, 애플리케이션 서비스와 같은 인프라 구성요소를 포함한 솔루션 요소를 탐색하고 배포해 볼 수 있습니다. 또한 이 과정에서는 고객 제공 암호화 키, 보안 및 액세스 관리, 할당량 및 요금 청구, 리소스 모니터링 등 실용적인 솔루션을 배포하는 방법에 대해서도 설명합니다.

자세히 알아보기

이 속성 주문형 과정은 참가자에게 Google Cloud에서 제공하는 포괄적이고 유연한 인프라 및 플랫폼 서비스를 Compute Engine을 중심으로 소개합니다. 참가자는 동영상 강의, 데모, 실무형 실습을 통해 네트워크, 가상 머신, 애플리케이션 서비스와 같은 인프라 구성요소를 포함한 솔루션 요소를 탐색하고 배포해 볼 수 있습니다. Console과 Cloud Shell을 통해 Google Cloud를 사용하는 방법을 학습합니다. 또한 클라우드 설계자의 역할, 인프라 설계 접근 방식은 물론 Virtual Private Cloud(VPC), 프로젝트, 네트워크, 서브네트워크, IP 주소, 경로, 방화벽 규칙을 사용한 가상 네트워킹 구성에 대해 알아봅니다.

자세히 알아보기

Google Cloud 기초: 핵심 인프라 과정은 Google Cloud 사용에 관한 중요한 개념 및 용어를 소개합니다. 이 과정에서는 동영상 및 실무형 실습을 통해 중요한 리소스 및 정책 관리 도구와 함께 Google Cloud의 다양한 컴퓨팅 및 스토리지 서비스를 살펴보고 비교합니다.

자세히 알아보기

이 과정은 학습자가 프로페셔널 머신러닝 엔지니어(PMLE) 자격증 시험을 준비하는 학습 계획을 수립하는 데 도움을 줍니다. 학습자는 시험에서 다루는 분야의 범위를 살펴보고 자신의 시험 준비 상태를 평가한 다음 개별 학습 계획을 세웁니다.

자세히 알아보기

Welcome to Hybrid Cloud Infrastructure Foundations with Anthos! This is the first course of the Architecting Hybrid Cloud Infrastructure with Anthos path. Anthos enables you to build and manage modern applications, and gives you the freedom to choose where to run them. Anthos gives you one consistent experience in both your on-premises and cloud environments. During this course, you will be presented with modules that will take you through skills that you will use as an architect or administrator running Anthos environments. The modules in this course include videos, hands-on labs, and links to helpful documentation.

자세히 알아보기

이 과정에서는 예측 및 생성형 AI 프로젝트를 모두 빌드하는 Google Cloud 기반 AI 및 머신러닝(ML) 제품군을 소개합니다. AI 기반, 개발, 솔루션을 모두 포함하여 데이터에서 AI로 이어지는 수명 주기 전반에 걸쳐 사용할 수 있는 기술과 제품, 도구를 살펴봅니다. 이 과정의 목표는 흥미로운 학습 경험과 실제적인 실무형 실습을 통해 데이터 과학자, AI 개발자, ML 엔지니어의 기술 및 지식 역량 강화를 지원하는 것입니다.

자세히 알아보기