Este curso demonstra como usar modelos de ML/IA para tarefas generativas no BigQuery. Nele, você vai conhecer o fluxo de trabalho para solucionar um problema comercial com modelos do Gemini utilizando um caso de uso prático que envolve gestão de relacionamento com o cliente. Para facilitar a compreensão, o curso também proporciona instruções detalhadas de soluções de programação que usam consultas SQL e notebooks Python.
Demonstrate the ability to create and deploy deterministic virtual agents using Dialgflow CX and augment responses by grounding results on your own data integrating with Vertex AI Agent Builder data stores and leveraging Gemini for summarizations. You will use the following technologies and Google Cloud services: Vertex AI Agent Builder Dialogflow CX Gemini
In this course, you'll learn to develop generative agents that answer questions using websites, documents, or structured data. You will explore Vertex AI Applications and understand the advantages of data store agents, including their scalability and security. You'll learn about different data store types and also discover how to connect data stores to agents and add personalization for enhanced responses. Finally, you'll gain insights into common search configurations and troubleshooting techniques.
This course explores the quality assurance best practices and the tools available in Conversational Agents to ensure production grade quality during Conversational Agent development, as well as the key tenets for the creation of a robust end to end deployment lifecycle. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
Conclua o curso intermediário para obter o selo de habilidade Como implementar as noções básicas de segurança da nuvem no Google Cloud para mostrar que você sabe: criar e atribuir papéis com o Identity and Access Management (IAM); criar e gerenciar contas de serviço; ativar a conectividade particular entre redes de nuvem privada virtual (VPC); restringir o acesso ao aplicativo usando o Identity-Aware Proxy; gerenciar chaves e dados criptografados usando o Cloud Key Management Service (KMS) e criar um cluster particular do Kubernetes. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e comprovam sua habilidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua o curso e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com seus contatos.
Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.
Este curso é perfeito para desenvolvedores de nuvem iniciantes que estão procurando prática além do Google Cloud Essentials. Você vai ganhar experiência em laboratórios que se aprofundam no Cloud Storage e em outros serviços de aplicativos fundamentais, como Monitoring e Cloud Functions. Você vai desenvolver habilidades importantes que podem ser aplicadas a qualquer iniciativa do Google Cloud.
Conclua o selo de habilidade introdutório Gerar insights a partir de dados do BigQuery para mostrar que você sabe gravar consultas SQL, consultar tabelas públicas e carregar dados de amostra no BigQuery, solucionar erros comuns de sintaxe com o validador de consultas no BigQuery e criar relatórios no Looker Studio fazendo a conexão com dados do BigQuery.
Neste curso, vamos falar sobre a engenharia de dados no Google Cloud, os papéis e responsabilidades dos engenheiros de dados e como alinhá-los aos produtos do Google Cloud. Além disso, você aprenderá a lidar com os desafios da engenharia de dados.
This course explores the fundamentals of the feedback loop process for Conversational Agent development and introduces the native capabilities within Conversational Agents that support it. You will also learn about advanced methods and tools to monitor the performance of your Conversational agent in Conversational Agents.
Discover flows in Conversational Agents and learn how to build deterministic chat and voice experiences with language models. Explore key concepts like drivers, intents, and entities, and how to use them to create conversational agents.
This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.
This course explores the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
This course explores the best practices, methods and tools to programmatically lead CCAI virtual agent delivery. It includes a high level overview of the end to end journey for building and deploying a virtual agent, as well as the core tenets to create a strong delivery culture. Additionally, this course covers the best practices for workflow management, defect tracking, release management and post-release support to ensure optimal virtual agent performance.
In this course you will learn the key architectural considerations that need to be taken into account when designing for the implementation of Conversational AI solutions. Please note Dialogflow CX was recently renamed to Conversational Agents and CCAI Insights was renamed to Conversational Insights.
In this course, you will learn the important role that different types of webhooks play in Conversational Agents development, and how to effectively integrate them into your routine configuration of a Conversational Agent. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
This is an introductory course to all solutions in the Conversational AI portfolio and the Gen AI features that are available to transform them. The course also explores the business case around Conversational AI, and the use cases and user personas addressed by the solution. Please note Dialogflow CX was recently renamed to Conversational Agents and this course is in the process of being updated to reflect the new product name for Dialogflow CX.
O processamento de dados de streaming é cada vez mais usado pelas empresas para gerar métricas sobre as operações comerciais em tempo real. Neste curso, você vai aprender a criar pipelines de dados de streaming no Google Cloud. O Pub/Sub é apresentado como a ferramenta para gerenciar dados de streaming de entrada. No curso, também abordamos a aplicação de agregações e transformações a dados de streaming usando o Dataflow, além de formas de armazenar registros processados no BigQuery ou no Bigtable para análise. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados de streaming no Google Cloud usando o Qwiklabs.
Earn a skill badge by completing the Detect Manufacturing Defects using Visual Inspection AI course, where you learn how to use Visual Inspection AI to deploy a solution artifact and test that it can successfully identify defects in a manufacturing process.
Na última parte da série de cursos do Dataflow, vamos abordar os componentes do modelo operacional do Dataflow. Veremos ferramentas e técnicas para solucionar problemas e otimizar o desempenho do pipeline. Depois analisaremos as práticas recomendadas de teste, implantação e confiabilidade para pipelines do Dataflow. Por fim, faremos uma revisão dos modelos, que facilitam o escalonamento dos pipelines do Dataflow para organizações com centenas de usuários. Essas lições garantem que a plataforma de dados seja estável e resiliente a circunstâncias imprevistas.
Conheça aplicativos, ferramentas e tecnologias de pesquisa com tecnologia de IA neste curso. Aprenda a fazer pesquisa semântica usando embeddings de vetores, pesquisa híbrida combinando abordagens semânticas e por palavras-chave, e geração aumentada por recuperação (RAG), minimizando as alucinações artificiais da IA como um agente de IA embasado. Ganhe experiência prática com a pesquisa vetorial da Vertex AI para criar um mecanismo de pesquisa inteligente.
Esta é a segunda parte do curso "Observabilidade no Google Cloud". Esse curso aborda ferramentas de gerenciamento do desempenho de aplicativos, incluindo Error Reporting, Cloud Trace e Cloud Profiler.
Conquiste o selo de habilidade introdutório Prepare os dados para relatórios e dashboards do Looker para mostrar que você sabe: filtrar, ordenar e dinamizar dados; mesclar resultados de diferentes Análises do Looker; e usar funções e operadores para criar dashboards e relatórios do Looker para análise e visualização de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprova sua capacidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.
Neste curso, ensinamos a criar um modelo de legenda para imagens usando aprendizado profundo. Você vai aprender sobre os diferentes componentes de um modelo de legenda para imagens, como o codificador e decodificador, e de que forma treinar e avaliar seu modelo. Ao final deste curso, você será capaz de criar e usar seus próprios modelos de legenda para imagens.
Este curso é uma introdução à arquitetura de transformador e ao modelo de Bidirectional Encoder Representations from Transformers (BERT, na sigla em inglês). Você vai aprender sobre os principais componentes da arquitetura de transformador, como o mecanismo de autoatenção, e como eles são usados para construir o modelo de BERT. Também vai conhecer as diferentes tarefas onde é possível usar o BERT, como classificação de texto, respostas a perguntas e inferência de linguagem natural. O curso leva aproximadamente 45 minutos.
Este curso apresenta um resumo da arquitetura de codificador-decodificador, que é uma arquitetura de machine learning avançada e frequentemente usada para tarefas sequência para sequência (como tradução automática, resumo de textos e respostas a perguntas). Você vai conhecer os principais componentes da arquitetura de codificador-decodificador e aprender a treinar e disponibilizar esses modelos. No tutorial do laboratório relacionado, você vai codificar uma implementação simples da arquitetura de codificador-decodificador para geração de poesia desde a etapa inicial no TensorFlow.
Este curso é uma introdução ao mecanismo de atenção, uma técnica avançada que permite que as redes neurais se concentrem em partes específicas de uma sequência de entrada. Você vai entender como a atenção funciona e como ela pode ser usada para melhorar o desempenho de várias tarefas de machine learning (como tradução automática, resumo de texto e resposta a perguntas).
Conclua o selo de habilidade intermediário Dados de engenharia para modelagem preditiva com o BigQuery ML para mostrar que você sabe: criar pipelines de transformação de dados no BigQuery usando o Dataprep by Trifacta; usar o Cloud Storage, o Dataflow e o BigQuery para criar fluxos de trabalho de extração, transformação e carregamento de dados (ELT); e criar modelos de machine learning usando o BigQuery ML.
In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.
Conclua o curso introdutório Criação de comandos na Vertex AI para: Demonstrar suas habilidades nas áreas de engenharia de comandos, análise de imagens e técnicas generativas multimodais na Vertex AI Descobrir como criar comandos eficientes, guiar as respostas da IA generativa e aplicar os modelos do Gemini em cenários reais de marketing Os selos de habilidade são digitais, exclusivos e emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e comprovar sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio para receber um selo de habilidade que pode ser compartilhado com seus contatos.
This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Conquiste o selo de habilidade intermediário ao concluir o curso Como criar e implantar soluções de machine learning na Vertex AI. Nele você aprenderá a usar a plataforma Vertex AI, o AutoML e os serviços de treinamento personalizados para treinar, avaliar, ajustar, explicar e implantar modelos de machine learning. Esse curso com selo de habilidade é destinado a cientistas de dados e engenheiros de machine learning. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com sua rede.
Este curso tem uma abordagem realista para o fluxo de trabalho de ML usando um estudo de caso em que uma equipe tem vários casos de uso e exigências comerciais em ML. Essa equipe precisa conhecer as ferramentas necessárias para a governança e o gerenciamento de dados e decidir a melhor abordagem para o processamento deles. A equipe terá três opções para criar modelos de ML em dois casos de uso. Neste curso, explicamos quando usar o AutoML, o BigQuery ML ou o treinamento personalizado para alcançar os objetivos.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
Quais são as práticas recomendadas para implementar machine learning no Google Cloud? O que é Vertex AI e como é possível usar a plataforma para criar, treinar e implantar modelos de machine learning do AutoML com rapidez e sem escrever nenhuma linha de código? O que é machine learning e que tipos de problema ele pode resolver? O Google pensa em machine learning de uma forma um pouco diferente. Para nós, o processo de ML é sobre fornecer uma plataforma unificada para conjuntos de dados gerenciados, como uma Feature Store, uma forma de criar, treinar e implantar modelos de machine learning sem escrever nenhuma linha de código. Além disso, o ML também é sobre a habilidade de rotular dados, criar notebooks do Workbench usando frameworks (como TensorFlow, SciKit Learn, Pytorch e R) e muito mais. A plataforma Vertex AI também inclui a possibilidade de treinar modelos personalizados, criar pipelines de componente e realizar previsões em lote e on-line. Também falamos sobre as cinco fas…
Neste curso, apresentamos os modelos de difusão, uma família de modelos de machine learning promissora no campo da geração de imagens. Os modelos de difusão são baseados na física, mais especificamente na termodinâmica. Nos últimos anos, eles se popularizaram no setor e nas pesquisas. Esses modelos servem de base para ferramentas e modelos avançados de geração de imagem no Google Cloud. Este curso é uma introdução à teoria dos modelos de difusão e como eles devem ser treinados e implantados na Vertex AI.
This content is deprecated. Please see the latest version of the course, here.
Receba um selo de habilidade ao concluir os cursos "Introduction to Generative AI", "Introduction to Large Language Models" e "Introduction to Responsible AI". Consiga a aprovação nos testes finais dos cursos para demonstrar seu conhecimento sobre os conceitos básicos da IA generativa. Os selos de habilidades são digitais. Eles são emitidos pelo Google Cloud como forma de reconhecer sua capacidade de trabalhar com os produtos e serviços do Cloud. Torne seu perfil público e adicione os selos de habilidades às suas mídias sociais para mostrar seus conhecimentos.
Neste curso, vamos conhecer o Vertex AI Studio, uma ferramenta para interagir com modelos de IA generativa, prototipar ideias comerciais e colocá-las em produção. Com a ajuda de um caso de uso imersivo, lições interessantes e um laboratório, você vai conhecer o ciclo de vida do comando à produção, além de usar o Vertex AI Studio para aplicativos multimodais do Gemini, design e engenharia de comandos e ajuste de modelos. O objetivo é permitir que você descubra todo o potencial da IA generativa nos seus projetos com o Vertex AI Studio.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
Quanto maior é o uso da inteligência artificial empresarial e do machine learning, mais importante é desenvolvê-los de maneira responsável. Para muitos, falar sobre a IA responsável pode ser mais fácil, mas colocá-la em prática é um desafio. Se você tem interesse em aprender a operacionalizar a IA responsável na sua organização, este curso é para você. Nele, você vai aprender como o Google Cloud faz isso hoje, além de analisar práticas recomendadas e lições aprendidas, a fim de criar uma base para elaborar sua própria abordagem de IA responsável.
Conclua o selo de habilidade intermediário Criar um data warehouse com o BigQuery para mostrar que você sabe mesclar dados para criar novas tabelas; solucionar problemas de mesclagens; adicionar dados ao final com uniões; criar tabelas particionadas por data; além de trabalhar com JSON, matrizes e structs no BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber uma certificação digital que você pode compartilhar com seus contatos.
Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.
Conclua o selo de habilidade introdutório Como criar uma malha de dados com o Dataplex para mostrar sua capacidade de usar o Dataplex para criar uma malha de dados e assim facilitar a segurança, a governança e a descoberta de dados no Google Cloud. Você vai praticar e testar suas habilidades em aplicar tags a recursos, atribuir papéis do IAM e avaliar a qualidade dos dados no Dataplex.
Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e testam sua habilidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado nas suas redes sociais e currículo.
Este é o primeiro de uma série de três cursos sobre processamento de dados sem servidor com o Dataflow. Nele, vamos relembrar o que é o Apache Beam e qual é a relação entre ele e o Dataflow. Depois, falaremos sobre a visão do Apache Beam e os benefícios do framework de portabilidade desse modelo de programação. Com esse processo, o desenvolvedor pode usar a linguagem de programação favorita com o back-end de execução que quiser. Em seguida, mostraremos como o Dataflow permite a separação entre a computação e o armazenamento para economizar dinheiro. Além disso, você vai aprender como as ferramentas de identidade, acesso e gerenciamento interagem com os pipelines do Dataflow. Por fim, vamos ver como implementar o modelo de segurança ideal para seu caso de uso no Dataflow.
A incorporação de machine learning em pipelines de dados aumenta a capacidade de extrair insights dessas informações. Neste curso, mostramos as várias formas de incluir essa tecnologia em pipelines de dados do Google Cloud. Para casos de pouca ou nenhuma personalização, vamos falar sobre o AutoML. Para usar recursos de machine learning mais personalizados, vamos apresentar os Notebooks e o machine learning do BigQuery (BigQuery ML). No curso, você também vai aprender sobre a produção de soluções de machine learning usando a Vertex AI.
This 1-week, accelerated on-demand course builds upon Google Cloud Platform Big Data and Machine Learning Fundamentals. Through a combination of video lectures, demonstrations, and hands-on labs, you'll learn to build streaming data pipelines using Google cloud Pub/Sub and Dataflow to enable real-time decision making. You will also learn how to build dashboards to render tailored output for various stakeholder audiences.
Os pipelines de dados geralmente se encaixam em um desses três paradigmas: extração e carregamento (EL), extração, carregamento e transformação (ELT) ou extração, transformação e carregamento (ETL). Este curso descreve qual paradigma deve ser usado em determinadas situações e quando isso ocorre com dados em lote. Além disso, vamos falar sobre várias tecnologias no Google Cloud para transformação de dados, incluindo o BigQuery, a execução do Spark no Dataproc, gráficos de pipeline no Cloud Data Fusion e processamento de dados sem servidor com o Dataflow. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados no Google Cloud usando o Qwiklabs.
Conquiste um selo de habilidade ao concluir o curso Como desenvolver sua rede do Google Cloud, que ensina várias maneiras de implantar e monitorar aplicativos, incluindo como analisar os papéis do IAM e adicionar/remover acesso a projetos, criar redes VPC, implantar e monitorar VMs do Compute Engine; gravar consultas SQL, implantar e monitorar VMs no Compute Engine e implantar aplicativos usando Kubernetes com múltiplas abordagens de implantação.
Os dois principais componentes de um pipeline de dados são data lakes e warehouses. Neste curso, destacamos os casos de uso para cada tipo de armazenamento e as soluções de data lake e warehouse disponíveis no Google Cloud de forma detalhada e técnica. Além disso, também descrevemos o papel de um engenheiro de dados, os benefícios de um pipeline de dados funcional para operações comerciais e analisamos por que a engenharia de dados deve ser feita em um ambiente de nuvem. Este é o primeiro curso da série "Engenharia de dados no Google Cloud". Após a conclusão, recomendamos que você comece o curso "Como criar pipelines de dados em lote no Google Cloud".
Este curso apresenta os produtos e serviços de Big Data e machine learning do Google Cloud que auxiliam no ciclo de vida de dados para IA. Ele explica os processos, os desafios e os benefícios de criar um pipeline de Big Data e modelos de machine learning com a Vertex AI no Google Cloud.
Este curso ajuda estudantes a criar um plano de estudo para o exame de certificação PDE (Professional Data Engineer). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.
Conclua o selo de habilidade intermediário Como criar infraestrutura com o Terraform no Google Cloud para mostrar que você sabe: usar os princípios de infraestrutura como código (IaC, na sigla em inglês) no Terraform, provisionar e gerenciar recursos do Google Cloud usando configurações do Terraform, gerenciamento de estado eficaz (local e remoto) e modularização do código do Terraform para reutilização e organização.
Conquiste um selo de habilidade ao concluir o curso Como configurar um ambiente de desenvolvimento de apps no Google Cloud. Nele, você aprende a criar e conectar uma infraestrutura em nuvem focada em armazenamento usando recursos básicos das seguintes tecnologias: Cloud Storage, Identity and Access Management, Cloud Functions e Pub/Sub.
Conquiste o selo de habilidade Implementar o balanceamento de carga no Compute Engine para demonstrar que você é capaz de: escrever comandos gcloud, usar o Cloud Shell, criar e implantar máquinas virtuais no Compute Engine e configurar balanceadores de carga HTTP e de rede. Um selo de habilidade é um selo digital exclusivo emitido pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Complete esse curso e o laboratório com desafio da avaliação final para receber o selo de habilidade que pode ser compartilhado com seus contatos.
Confira neste curso uma introdução ao uso do Terraform para Google Cloud. Nele, você aprende como o Terraform pode ser usado para implementar infraestrutura como código e aplicar alguns dos principais recursos e funcionalidades para criar e gerenciar a infraestrutura do Google Cloud. Também incluímos experiências práticas de criação e gerenciamento de recursos do Google Cloud usando o Terraform.
Este curso ensina aos participantes técnicas de monitoramento e melhoria de infraestrutura e desempenho de aplicativos no Google Cloud. Com uma combinação de apresentações, demonstrações, laboratórios práticos e estudos de caso do mundo real, os participantes ganham experiência com monitoramento de pilha completa, gerenciamento e análise de registro em tempo real, depuração de código em produção, rastreamento de gargalos de desempenho de aplicativos, caracterização de perfil de CPU e uso de memória.
Bem-vindo ao curso "Introdução ao Google Kubernetes Engine". Se você têm interesse no Kubernetes, uma camada de software que fica entre seus aplicativos e a infraestrutura de hardware, aqui é o lugar certo. O Google Kubernetes Engine transforma o Kubernetes em um serviço gerenciado no Google Cloud. O objetivo deste curso é apresentar os conceitos básicos do Google Kubernetes Engine, ou GKE, como é comumente conhecido, e aprender a conteinerizar e executar aplicativos no Google Cloud. O curso começa com uma introdução básica ao Google Cloud e é seguido pelos conceitos gerais dos contêineres e do Kubernetes, da arquitetura do Kubernetes e das operações do Kubernetes.
Neste curso intensivo sob demanda, os participantes vão conhecer os serviços abrangentes e flexíveis de infraestrutura e plataforma fornecidos pelo Google Cloud. Com o auxílio de videoaulas, demonstrações e laboratórios práticos, os participantes têm a chance de conhecer e implantar elementos da solução. Isso inclui interconexão segura entre redes, balanceamento de carga, escalonamento automático, automação de infraestrutura e serviços gerenciados.
Neste curso intensivo sob demanda, os participantes vão conhecer os serviços abrangentes e flexíveis de infraestrutura e plataforma fornecidos pelo Google Cloud, com foco no Compute Engine. Com o auxílio de videoaulas, demonstrações e laboratórios práticos, os participantes têm a chance de conhecer e implantar elementos da solução, incluindo componentes de infraestrutura, como redes, sistemas e serviços de aplicativos. O curso também aborda a implantação de soluções práticas, como chaves de criptografia fornecidas pelo cliente, gerenciamento de segurança e acesso, cotas e faturamento, além do monitoramento de recursos.
Neste curso intensivo sob demanda, os participantes vão conhecer os serviços abrangentes e flexíveis de infraestrutura e plataforma fornecidos pelo Google Cloud, com foco no Compute Engine. Com o auxílio de videoaulas, demonstrações e laboratórios práticos, os participantes têm chance de conhecer e implantar elementos da solução, incluindo componentes de infraestrutura, como redes, máquinas virtuais e serviços de aplicativos. Você vai aprender a usar o Google Cloud no Console e no Cloud Shell. Além disso, vamos detalhar o papel de um arquiteto de nuvem, abordagens de design de infraestruturas, configuração de redes virtuais com a nuvem privada virtual (VPC), projetos, redes, sub-redes, endereços IP, rotas e regras de firewall.
"Noções básicas do Google Cloud: infraestrutura principal" é uma apresentação da terminologia e de conceitos importantes para trabalhar com o Google Cloud. Usando vídeos e laboratórios práticos, o curso apresenta e compara vários serviços de armazenamento e computação do Google Cloud, além de ferramentas importantes para o gerenciamento de políticas e recursos.
Este curso ajuda você a se preparar para o exame Associate Cloud Engineer. Você vai aprender sobre os domínios do Google Cloud abordados no exame e como criar um plano de estudos para melhorar seu conhecimento sobre o assunto.
Este curso ajuda você a se preparar para o exame Associate Cloud Engineer. Você vai aprender sobre os domínios do Google Cloud abordados no exame e como criar um plano de estudos para melhorar seu conhecimento sobre o assunto.