Claudio Collao
회원 가입일: 2023
다이아몬드 리그
108190포인트
회원 가입일: 2023
이 과정은 BigQuery에서 생성형 AI 작업에 AI/ML 모델을 사용하는 방법을 보여줍니다. 고객 관계 관리와 관련된 실제 사용 사례를 통해 Gemini 모델로 비즈니스 문제를 해결하는 워크플로를 설명합니다. 이해를 돕기 위해 SQL 쿼리와 Python 노트북을 사용하는 코딩 솔루션을 단계별로 안내합니다.
Demonstrate the ability to create and deploy deterministic virtual agents using Dialgflow CX and augment responses by grounding results on your own data integrating with Vertex AI Agent Builder data stores and leveraging Gemini for summarizations. You will use the following technologies and Google Cloud services: Vertex AI Agent Builder Dialogflow CX Gemini
In this course, you'll learn to develop generative agents that answer questions using websites, documents, or structured data. You will explore Vertex AI Applications and understand the advantages of data store agents, including their scalability and security. You'll learn about different data store types and also discover how to connect data stores to agents and add personalization for enhanced responses. Finally, you'll gain insights into common search configurations and troubleshooting techniques.
This course explores the quality assurance best practices and the tools available in Conversational Agents to ensure production grade quality during Conversational Agent development, as well as the key tenets for the creation of a robust end to end deployment lifecycle. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
중급 Google Cloud에서 Cloud 보안 기본사항 구현하기 기술 배지 과정을 완료하여 Identity and Access Management(IAM)로 역할 생성 및 할당, 서비스 계정 생성 및 관리, 가상 프라이빗 클라우드(VPC) 네트워크에서 비공개 연결 사용 설정, IAP(Identity-Aware Proxy)를 사용한 애플리케이션 액세스 제한, Cloud Key Management Service(KMS)를 사용한 키와 암호화된 데이터 관리, 비공개 Kubernetes 클러스터 생성과 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 디지털 배지를 받을 수 있습니다.
이 과정에서는 예측 및 생성형 AI 프로젝트를 모두 빌드하는 Google Cloud 기반 AI 및 머신러닝(ML) 제품군을 소개합니다. AI 기반, 개발, 솔루션을 모두 포함하여 데이터에서 AI로 이어지는 수명 주기 전반에 걸쳐 사용할 수 있는 기술과 제품, 도구를 살펴봅니다. 이 과정의 목표는 흥미로운 학습 경험과 실제적인 실무형 실습을 통해 데이터 과학자, AI 개발자, ML 엔지니어의 기술 및 지식 역량 강화를 지원하는 것입니다.
이 과정은 Google Cloud 기본 개념 과정 이상의 지식을 얻기 위해 실무형 실습을 찾는 초보 클라우드 개발자에게 도움이 됩니다. 실습을 통해 Cloud Storage와 Monitoring 및 Cloud Functions 등 기타 주요 애플리케이션 서비스를 자세히 살펴보며 실무 경험을 쌓게 됩니다. 모든 Google Cloud 이니셔티브에 적용할 수 있는 유용한 기술을 개발할 수 있습니다.
초급 BigQuery 데이터에서 인사이트 도출 기술 배지 과정을 완료하여 SQL 쿼리 작성, 공개 테이블 쿼리, BigQuery로 샘플 데이터 로드, BigQuery의 쿼리 검사기를 통한 일반적인 문법 오류 문제 해결, BigQuery 데이터를 연결해 Looker Studio에서 보고서를 생성하는 작업과 관련된 기술 역량을 입증하세요.
이 과정에서는 Google Cloud의 데이터 엔지니어링, 데이터 엔지니어의 역할과 책임, 그리고 이러한 요소가 Google Cloud 제공 서비스와 어떻게 연결되는지에 대해 알아봅니다. 또한 데이터 엔지니어링 과제를 해결하는 방법에 대해서도 배우게 됩니다.
This course explores the fundamentals of the feedback loop process for Conversational Agent development and introduces the native capabilities within Conversational Agents that support it. You will also learn about advanced methods and tools to monitor the performance of your Conversational agent in Conversational Agents.
Discover flows in Conversational Agents and learn how to build deterministic chat and voice experiences with language models. Explore key concepts like drivers, intents, and entities, and how to use them to create conversational agents.
This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.
This course explores the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
This course explores the best practices, methods and tools to programmatically lead CCAI virtual agent delivery. It includes a high level overview of the end to end journey for building and deploying a virtual agent, as well as the core tenets to create a strong delivery culture. Additionally, this course covers the best practices for workflow management, defect tracking, release management and post-release support to ensure optimal virtual agent performance.
In this course you will learn the key architectural considerations that need to be taken into account when designing for the implementation of Conversational AI solutions. Please note Dialogflow CX was recently renamed to Conversational Agents and CCAI Insights was renamed to Conversational Insights.
In this course, you will learn the important role that different types of webhooks play in Conversational Agents development, and how to effectively integrate them into your routine configuration of a Conversational Agent. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
This is an introductory course to all solutions in the Conversational AI portfolio and the Gen AI features that are available to transform them. The course also explores the business case around Conversational AI, and the use cases and user personas addressed by the solution. Please note Dialogflow CX was recently renamed to Conversational Agents and this course is in the process of being updated to reflect the new product name for Dialogflow CX.
스트리밍을 통해 비즈니스 운영에 대한 실시간 측정항목을 얻을 수 있게 되면서 스트리밍 데이터 처리의 사용이 늘고 있습니다. 이 과정에서는 Google Cloud에서 스트리밍 데이터 파이프라인을 빌드하는 방법을 다룹니다. 수신되는 스트리밍 데이터 처리와 관련해 Pub/Sub를 설명합니다. 이 과정에서는 Dataflow를 사용해 집계 및 변환을 스트리밍 데이터에 적용하는 방법과 처리된 레코드를 분석을 위해 BigQuery 또는 Bigtable에 저장하는 방법에 대해서도 다룹니다. Google Cloud에서 Qwiklabs를 사용해 스트리밍 데이터 파이프라인 구성요소를 빌드하는 실습을 진행해 볼 수도 있습니다.
Earn a skill badge by completing the Detect Manufacturing Defects using Visual Inspection AI course, where you learn how to use Visual Inspection AI to deploy a solution artifact and test that it can successfully identify defects in a manufacturing process.
In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.
이 과정에서는 AI 기반 검색 기술, 도구, 애플리케이션을 살펴봅니다. 벡터 임베딩을 활용하는 시맨틱 검색, 시맨틱 방식과 키워드 방식을 결합한 하이브리드 검색, 그라운딩된 AI 에이전트로서 AI 할루시네이션을 최소화하는 검색 증강 생성(RAG)에 대해 알아보세요. Vertex AI 벡터 검색을 활용해 지능형 검색 엔진을 빌드하는 실무 경험을 쌓을 수 있습니다.
Welcome to the second part of the two part course, Observability in Google Cloud. This course is all about application performance management tools, including Error Reporting, Cloud Trace, and Cloud Profiler.
초급 Looker 대시보드 및 보고서를 위해 데이터 준비하기 기술 배지 과정을 완료하면 데이터를 필터링, 정렬, 피벗팅하고, 다른 Looker Explore의 결과를 병합하고, 함수 및 연산자를 사용해 데이터 분석 및 시각화를 위한 Looker 대시보드 및 보고서를 빌드하는 기술 역량을 입증할 수 있습니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유 가능한 기술 배지를 받을 수 있습니다.
This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.
이 과정에서는 딥 러닝을 사용해 이미지 캡션 모델을 만드는 방법을 알아봅니다. 인코더 및 디코더와 모델 학습 및 평가 방법 등 이미지 캡션 모델의 다양한 구성요소에 대해 알아봅니다. 이 과정을 마치면 자체 이미지 캡션 모델을 만들고 이를 사용해 이미지의 설명을 생성할 수 있게 됩니다.
이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.
이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.
이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.
중급 BigQuery ML을 사용한 예측 모델링을 위한 데이터 엔지니어링 기술 배지를 획득하여 Dataprep by Trifact로 데이터 변환 파이프라인을 BigQuery에 빌드, Cloud Storage, Dataflow, BigQuery를 사용한 ETL(추출, 변환, 로드) 워크플로 빌드, BigQuery ML을 사용하여 머신러닝 모델을 빌드하는 기술 역량을 입증할 수 있습니다.
In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.
초급 Vertex AI의 프롬프트 설계 기술 배지를 완료하여 Vertex AI 내 프롬프트 엔지니어링, 이미지 분석, 멀티모달 생성형 기술과 관련된 기술 역량을 입증하세요. 효과적인 프롬프트를 만들고 생성형 AI 출력을 안내하며 실제 마케팅 분야 시나리오에 Gemini 모델을 적용하는 방법을 알아보세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.
This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Vertex AI에서 머신러닝 솔루션 빌드 및 배포하기 과정을 완료하여 중급 기술 배지를 획득하세요. 이 과정에서는 Google Cloud의 Vertex AI Platform, AutoML, 커스텀 학습 서비스를 사용해 머신러닝 모델을 학습, 평가, 조정, 설명, 배포하는 방법을 알아봅니다. 이 기술배지 과정은 전문 데이터 과학자 및 머신러닝 엔지니어를 대상으로 합니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 디지털 배지를 받게 됩니다.
이 과정에서는 우수사례를 중심으로 ML 워크플로에 대한 실질적인 접근 방식을 취합니다. ML팀은 다양한 ML 비즈니스 요구사항과 사용 사례에 직면합니다. 팀에서는 데이터 관리 및 거버넌스에 필요한 도구를 이해하고 가장 효과적으로 데이터 전처리에 접근하는 방식을 파악해야 합니다. 두 가지 사용 사례를 위한 ML 모델을 빌드하는 세 가지 옵션이 팀에 제시됩니다. 이 과정에서는 목표를 달성하기 위해 AutoML, BigQuery ML 또는 커스텀 학습을 사용하는 이유를 설명합니다.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
Google Cloud에서 머신러닝을 구현하기 위한 권장사항에는 어떤 것이 있을까요? Vertex AI란 무엇이고, 이 플랫폼을 사용하여 코드는 한 줄도 작성하지 않고 AutoML 머신러닝 모델을 빠르게 빌드, 학습, 배포하려면 어떻게 해야 할까요? 머신러닝이란 무엇이며 어떤 종류의 문제를 해결할 수 있을까요? Google은 머신러닝을 조금 다른 방식으로 바라봅니다. Google이 머신러닝과 관련하여 중요하게 생각하는 것은 관리형 데이터 세트를 위한 통합 플랫폼과 특징 저장소를 제공하고, 코드를 작성하지 않고도 머신러닝 모델을 빌드, 학습, 배포할 방법을 제공하고, 데이터에 라벨을 지정하고, TensorFlow, scikit-learn, Pytorch, R 등과 같은 프레임워크를 사용하여 Workbench 노트북을 만들 수 있도록 지원하는 것입니다. Google의 Vertex AI 플랫폼에는 커스텀 모델을 학습시키고, 구성요소 파이프라인을 빌드하고, 온라인 및 일괄 예측을 실행하는 기능이 포함되어 있습니다. 후보 사용 사례를 머신러닝으로 구동되도록 변환하는 5단계를 살펴보고, 단계를 건너뛰지 않는 것이 중요한 이유를 알아봅니다. 마지막으로, 머신러닝이 증폭시킬 수 있는 편향과 이를 인식할 방법을 살펴봅니다.
이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.
This content is deprecated. Please see the latest version of the course, here.
Introduction to Generative AI, Introduction to Large Language Models, Introduction to Responsible AI 과정을 완료하고 기술 배지를 획득하세요. 최종 퀴즈를 풀어보고 생성형 AI의 기본 개념을 제대로 이해했는지 확인해 보세요. 기술 배지는 Google Cloud 제품 및 서비스에 대한 지식을 숙지한 사람에게 Google Cloud에서 발급하는 디지털 배지입니다. 프로필을 공개하고 기술 배지를 소셜 미디어 프로필에 추가하여 공유하세요.
이 과정에서는 생성형 AI 모델과 상호작용하고 비즈니스 아이디어의 프로토타입을 제작하여 프로덕션으로 출시할 수 있는 도구인 Vertex AI Studio를 소개합니다. 몰입감 있는 사용 사례, 흥미로운 강의, 실무형 실습을 통해 프롬프트부터 프로덕션에 이르는 수명 주기를 살펴보고 Vertex AI Studio를 Gemini 멀티모달 애플리케이션, 프롬프트 설계, 프롬프트 엔지니어링, 모델 조정에 활용하는 방법을 알아봅니다. 이 과정의 목표는 Vertex AI Studio로 프로젝트에서 생성형 AI의 잠재력을 활용하는 것입니다.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.
중급 BigQuery로 데이터 웨어하우스 빌드 기술 배지를 완료하여 데이터를 조인하여 새 테이블 만들기, 조인 관련 문제 해결, 합집합으로 데이터 추가, 날짜로 파티션을 나눈 테이블 만들기, BigQuery에서 JSON, 배열, 구조체 작업하기와 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 대화형 실습 환경을 통해 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.
책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.
이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
초급 Dataplex로 데이터 메시 빌드하기 기술 배지 과정을 완료하여, Dataplex를 통해 데이터 메시를 빌드해 Google Cloud에서 데이터 보안, 거버넌스, 탐색을 활용하는 역량을 입증하세요. Dataplex에서 애셋에 태그를 지정하고, IAM 역할을 할당하고, 데이터 품질을 평가하는 기술을 연습하고 테스트할 수 있습니다.
초급 Google Cloud에서 ML API용으로 데이터 준비하기 기술 배지를 완료하여 Dataprep by Trifacta로 데이터 정리, Dataflow에서 데이터 파이프라인 실행, Dataproc에서 클러스터 생성 및 Apache Spark 작업 실행, Cloud Natural Language API, Google Cloud Speech-to-Text API, Video Intelligence API를 포함한 ML API 호출과 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
머신러닝을 데이터 파이프라인에 통합하면 데이터에서 더 많은 인사이트를 도출할 수 있습니다. 이 과정에서는 머신러닝을 Google Cloud의 데이터 파이프라인에 포함하는 방법을 알아봅니다. 맞춤설정이 거의 또는 전혀 필요 없는 경우에 적합한 AutoML에 대해 알아보고 맞춤형 머신러닝 기능이 필요한 경우를 위해 Notebooks 및 BigQuery 머신러닝(BigQuery ML)도 소개합니다. Vertex AI를 사용해 머신러닝 솔루션을 프로덕션화하는 방법도 다루어 보겠습니다.
This 1-week, accelerated on-demand course builds upon Google Cloud Platform Big Data and Machine Learning Fundamentals. Through a combination of video lectures, demonstrations, and hands-on labs, you'll learn to build streaming data pipelines using Google cloud Pub/Sub and Dataflow to enable real-time decision making. You will also learn how to build dashboards to render tailored output for various stakeholder audiences.
데이터 파이프라인은 일반적으로 추출-로드(EL), 추출-로드-변환(ELT) 또는 추출-변환-로드(ETL) 패러다임 중 하나에 속합니다. 이 과정에서는 일괄 데이터에 사용해야 할 패러다임과 사용 시기에 대해 설명합니다. 또한 BigQuery, Dataproc에서의 Spark 실행, Cloud Data Fusion의 파이프라인 그래프, Dataflow를 사용한 서버리스 데이터 처리 등 데이터 변환을 위한 Google Cloud의 여러 가지 기술을 다룹니다. Google Cloud에서 Qwiklabs를 사용해 데이터 파이프라인 구성요소를 빌드하는 실무형 실습도 진행합니다.
Google Cloud 네트워크 개발 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 IAM 역할 탐색 및 프로젝트 액세스 권한 추가/삭제, VPC 네트워크 생성, Compute Engine VM 배포 및 모니터링, SQL 쿼리 작성, Compute Engine에서 VM 배포 및 모니터링, Kubernetes를 여러 배포 접근 방식과 함께 사용하여 애플리케이션을 배포하는 등의 다양한 애플리케이션 배포 및 모니터링 방법을 배울 수 있습니다.
데이터 파이프라인의 두 가지 주요 구성요소는 데이터 레이크와 웨어하우스입니다. 이 과정에서는 스토리지 유형별 사용 사례를 살펴보고 Google Cloud에서 사용 가능한 데이터 레이크 및 웨어하우스 솔루션을 기술적으로 자세히 설명합니다. 또한 데이터 엔지니어의 역할, 성공적인 데이터 파이프라인이 비즈니스 운영에 가져오는 이점, 클라우드 환경에서 데이터 엔지니어링을 수행해야 하는 이유도 알아봅니다. 'Google Cloud의 데이터 엔지니어링' 시리즈의 첫 번째 과정입니다. 이 과정을 완료한 후 'Google Cloud에서 일괄 데이터 파이프라인 빌드하기' 과정에 등록하세요.
이 과정에서는 데이터-AI 수명 주기를 지원하는 Google Cloud 빅데이터 및 머신러닝 제품과 서비스를 소개합니다. Google Cloud에서 Vertex AI를 사용하여 빅데이터 파이프라인 및 머신러닝 모델을 빌드하는 프로세스, 문제점 및 이점을 살펴봅니다.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
중급 Google Cloud에서 Terraform으로 인프라 빌드 기술 배지 과정을 완료하여 Terraform을 사용하는 코드형 인프라(IaC) 원칙, Terraform 구성으로 Google Cloud 리소스 프로비저닝 및 관리, 효과적인 상태 관리(로컬 및 원격), 재사용성 및 구성을 위한 Terraform 코드 모듈화 등에 관한 기술을 입증하세요.
Google Cloud 앱 개발 환경 설정 과정을 완료하여 기술 배지를 획득하세요. Cloud Storage, Identity and Access Management, Cloud Functions, Pub/Sub의 기본 기능을 사용하여 스토리지 중심 클라우드 인프라를 구축하고 연결하는 방법을 배울 수 있습니다.
입문 Compute Engine에서 부하 분산 구현 기술 배지 과정을 완료하여 gcloud 명령어 작성 및 Cloud Shell 사용, Compute Engine에서 가상 머신 만들기 및 배포, 네트워크 및 HTTP 부하 분산기 구성에 관한 본인의 기술을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스에 대한 개인의 숙련도를 인정하기 위해 Google Cloud에서 단독 발급하는 디지털 배지로서 대화형 실습 환경을 통해 지식을 적용하는 역량을 테스트합니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받게 됩니다.
This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
Google Kubernetes Engine 시작하기 과정에 오신 것을 환영합니다. 애플리케이션과 하드웨어 인프라 사이에 위치하는 소프트웨어 레이어인 Kubernetes에 관심이 있으시다면 잘 찾아오셨습니다. Google Kubernetes Engine을 사용하면 Kubernetes를 Google Cloud에서 관리형 서비스로 사용할 수 있습니다. 이 과정의 목표는 흔히 GKE로 불리는 Google Kubernetes Engine의 기본사항을 소개하고 Google Cloud에서 애플리케이션을 컨테이너화하고 실행하는 방법을 설명하는 것입니다. 이 과정에서는 먼저 Google Cloud에 대해 기본적인 사항을 소개한 후 이어서 컨테이너 및 Kubernetes, Kubernetes 아키텍처, Kubernetes 작업에 대해 간략히 설명합니다.
이 속성 주문형 과정에서는 참가자에게 Google Cloud에서 제공하는 포괄적이고 유연한 인프라 및 플랫폼 서비스를 소개합니다. 참가자는 동영상 강의, 데모, 실무형 실습이 결합된 이 과정을 통해 안전한 네트워크 상호 연결, 부하 분산, 자동 확장, 인프라 자동화, 관리형 서비스가 포함된 솔루션 요소를 살펴보고 배포할 수 있습니다.
이 속성 주문형 과정은 참가자에게 Google Cloud에서 제공하는 포괄적이고 유연한 인프라 및 플랫폼 서비스를 Compute Engine을 중심으로 소개합니다. 참가자는 동영상 강의, 데모, 실무형 실습을 통해 네트워크, 시스템, 애플리케이션 서비스와 같은 인프라 구성요소를 포함한 솔루션 요소를 탐색하고 배포해 볼 수 있습니다. 또한 이 과정에서는 고객 제공 암호화 키, 보안 및 액세스 관리, 할당량 및 요금 청구, 리소스 모니터링 등 실용적인 솔루션을 배포하는 방법에 대해서도 설명합니다.
이 속성 주문형 과정은 참가자에게 Google Cloud에서 제공하는 포괄적이고 유연한 인프라 및 플랫폼 서비스를 Compute Engine을 중심으로 소개합니다. 참가자는 동영상 강의, 데모, 실무형 실습을 통해 네트워크, 가상 머신, 애플리케이션 서비스와 같은 인프라 구성요소를 포함한 솔루션 요소를 탐색하고 배포해 볼 수 있습니다. Console과 Cloud Shell을 통해 Google Cloud를 사용하는 방법을 학습합니다. 또한 클라우드 설계자의 역할, 인프라 설계 접근 방식은 물론 Virtual Private Cloud(VPC), 프로젝트, 네트워크, 서브네트워크, IP 주소, 경로, 방화벽 규칙을 사용한 가상 네트워킹 구성에 대해 알아봅니다.
Google Cloud 기초: 핵심 인프라 과정은 Google Cloud 사용에 관한 중요한 개념 및 용어를 소개합니다. 이 과정에서는 동영상 및 실무형 실습을 통해 중요한 리소스 및 정책 관리 도구와 함께 Google Cloud의 다양한 컴퓨팅 및 스토리지 서비스를 살펴보고 비교합니다.
This course, Preparing for Your Associate Cloud Engineer Journey - Locales, is intended for non-English learners. If you want to take this course in English, please enroll in Preparing for Your Associate Cloud Engineer Journey. This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.
This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.