Teilnehmen Anmelden

Thamu Mnyulwa

Mitglied seit 2023

Silver League

61210 Punkte
Machine Learning Operations (MLOps): Getting Started Earned Jun 2, 2025 EDT
Einführung in Large Language Models Earned Mai 30, 2025 EDT
Einführung in generative KI Earned Mai 30, 2025 EDT
Ihre Organisation mit generativen KI-Agenten voranbringen Earned Mai 28, 2025 EDT
Die vielfältigen Formen generativer KI Earned Mai 21, 2025 EDT
Generative KI: Grundlegende Konzepte Earned Mai 15, 2025 EDT
Generative KI ist mehr als nur Chatbots Earned Mai 15, 2025 EDT
ML-Modelle mit BigQuery ML erstellen Earned Mai 6, 2025 EDT
Feature Engineering Earned Mai 4, 2025 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Jan 30, 2025 EST
ML-Lösungen mit Vertex AI erstellen und bereitstellen Earned Jan 22, 2025 EST
Build MLOps Pipelines using Vertex AI Earned Jan 21, 2025 EST
Einführung in KI und maschinelles Lernen in Google Cloud Earned Jan 6, 2025 EST
Monitoring und Logging mit Google Cloud Observability Earned Dez 7, 2024 EST
Umgebung für die Anwendungsentwicklung in Google Cloud einrichten Earned Dez 7, 2024 EST
Load Balancing in der Compute Engine implementieren Earned Dez 3, 2024 EST
Einführung in Data Engineering in Google Cloud Earned Dez 1, 2024 EST
Grundlegende Sicherheitsfunktionen in Google Cloud implementieren Earned Nov 30, 2024 EST
Referenz – Infrastruktur Earned Nov 22, 2024 EST
Daten für Looker-Dashboards und ‑Berichte vorbereiten Earned Nov 21, 2024 EST
Modernize Infrastructure and Applications with Google Cloud Earned Aug 11, 2024 EDT
Innovating with Google Cloud Artificial Intelligence Earned Aug 8, 2024 EDT
Exploring Data Transformation with Google Cloud Earned Aug 7, 2024 EDT
Share Data Using Google Data Cloud Earned Jul 21, 2024 EDT
Informationen aus BigQuery-Daten ableiten Earned Jul 19, 2024 EDT
Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten Earned Jul 19, 2024 EDT
Streamanalyse in BigQuery Earned Jul 17, 2024 EDT
Serverless Data Processing with Dataflow: Foundations Earned Jul 2, 2024 EDT
Preparing for your Professional Data Engineer Journey Earned Jun 29, 2024 EDT
Data Mesh mit Dataplex aufbauen Earned Jun 26, 2024 EDT
Daten für ML-APIs in Google Cloud vorbereiten Earned Mai 31, 2024 EDT
Data Warehouse mit BigQuery erstellen Earned Mai 31, 2024 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned Mai 29, 2024 EDT
Einführung in die verantwortungsbewusste Anwendung von KI Earned Mai 23, 2024 EDT
Build Data Lakes and Data Warehouses on Google Cloud Earned Mai 15, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Mai 2, 2024 EDT

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.

Weitere Informationen

„Ihre Organisation mit generativen KI-Agenten voranbringen“ ist der fünfte und letzte Kurs des Lernpfads „Generative AI Leader“. In diesem Kurs erfahren Sie, wie Unternehmen mit benutzerdefinierten generativen KI-Agenten spezifische geschäftliche Herausforderungen meistern können. Sie lernen, wie Sie einen einfachen Agenten für generative KI erstellen, und machen sich mit den Komponenten dieser Agenten vertraut, z. B. mit Modellen, Reasoning Loops und Tools.

Weitere Informationen

„Die vielfältigen Formen generativer KI“ ist der dritte Kurs des Lernpfads „Generative AI Leader“. Generative KI verändert die Art und Weise, wie wir arbeiten und mit der Welt um uns herum interagieren. Aber wie können Sie als Führungskraft die Möglichkeiten von KI nutzen, um echte Geschäftsergebnisse zu erzielen? In diesem Kurs lernen Sie die verschiedenen Ebenen der Entwicklung von generativen KI-Lösungen, die Angebote von Google Cloud und die Faktoren kennen, die bei der Auswahl einer Lösung zu berücksichtigen sind.

Weitere Informationen

„Generative KI: Grundlegende Konzepte“ ist der zweite Kurs des Lernpfads „Generative AI Leader“. In diesem Kurs lernen Sie die grundlegenden Konzepte der generativen KI kennen. Sie erfahren, wie sich KI, ML und generative KI unterscheiden und wie generative KI geschäftliche Herausforderungen mithilfe verschiedener Datentypen bewältigt. Außerdem erhalten Sie Einblicke in die Strategien von Google Cloud, um die Einschränkungen von Foundation Models zu überwinden, und in die wichtigsten Herausforderungen für eine verantwortungsbewusste und sichere KI-Entwicklung und ‑Bereitstellung.

Weitere Informationen

„Generative KI ist mehr als nur Chatbots“ ist der erste Kurs des Lernpfads „Generative AI Leader“ und hat keine Voraussetzungen. In diesem Kurs geht es nicht nur um die Grundlagen von Chatbots, sondern auch um das wahre Potenzial von generativer KI für Ihr Unternehmen. Sie lernen Konzepte wie Foundation Models und Prompt Engineering kennen, die für die Nutzung der Leistungsfähigkeit von generativer KI entscheidend sind. Außerdem werden wichtige Überlegungen behandelt, die Sie bei der Entwicklung einer erfolgreichen Strategie für generative KI für Ihr Unternehmen berücksichtigen sollten.

Weitere Informationen

Mit dem Skill-Logo zum Kurs ML-Modelle mit BigQuery ML erstellen weisen Sie fortgeschrittene Kenntnisse in folgendem Bereich nach: Erstellen und Bewerten von Machine-Learning-Modellen mit BigQuery ML, um Datenvorhersagen zu treffen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Weitere Informationen

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Weitere Informationen

Mit dem Skill-Logo zum Kurs ML-Lösungen mit Vertex AI erstellen und bereitstellen weisen Sie fortgeschrittene Kenntnisse nach. Sie lernen in diesem Kurs, wie Sie die Vertex AI-Plattform von Google Cloud, AutoML und benutzerdefinierte Trainingsdienste nutzen, um Machine-Learning-Modelle zu trainieren, zu bewerten, abzustimmen, zu erklären und bereitzustellen. Dieser Kurs richtet sich an professionelle Data Scientists und Machine Learning Engineers. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über Produkte und Dienste von Google Cloud belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie diese Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

This skill badge aims to evaluate a partner's ability to utilize various methods available to them to automate manual processes involved when deploying machine learning models using Vertex AI. Manual processes are often not scalable which is why advancing an organization's AI/ML adoption requires ML Ops processes to improve the rate of model training, experimentation and deployment.

Weitere Informationen

In diesem Kurs lernen Sie die KI- und ML-Angebote von Google Cloud für Projekte mit prädiktiver und generativer KI kennen. Dabei werden die Technologien, Produkte und Tools vorgestellt, die für den gesamten Lebenszyklus der Datenaufbereitung für KI verfügbar sind. Der Kurs umfasst KI‑Grundlagen, ‑Entwicklung und ‑Lösungen. Data Scientists, KI-Entwickler und ML-Engineers sollen in diesem Kurs ihre Fähigkeiten und Kenntnisse durch ansprechende Lernangebote sowie praxisorientierte Übungen erweitern.

Weitere Informationen

Mit dem Skill-Logo Monitoring und Logging mit Google Cloud Observability weisen Sie Grundkenntnisse in folgenden Bereichen nach: Überwachen virtueller Maschinen in der Compute Engine, Einsetzen von Cloud Monitoring für Verwaltung mehrerer Projekte, Erweitern von Monitoring- und Logging-Funktionen zur Nutzung in Cloud Functions, Erstellen und Senden von benutzerdefinierten Anwendungsmesswerten und Konfigurieren von Cloud Monitoring-Benachrichtigungen auf der Grundlage benutzerdefinierter Messwerte.

Weitere Informationen

Erhalten Sie ein Skill-Logo, indem Sie den Kurs „Umgebung für die Anwendungsentwicklung in Google Cloud einrichten“ abschließen. Dabei lernen Sie, wie Sie eine speicherorientierte Cloud-Infrastruktur mithilfe der grundlegenden Funktionen der folgenden Technologien erstellen und verbinden: Cloud Storage, Identity and Access Management, Cloud Functions und Pub/Sub.

Weitere Informationen

Mit dem Skill-Logo Load Balancing in der Compute Engine implementieren weisen Sie Kenntnisse in folgenden Bereichen nach: Schreiben von gcloud-Befehlen, Verwenden von Cloud Shell, Erstellen und Bereitstellen von virtuellen Maschinen in der Compute Engine und Konfigurieren von Netzwerk- und HTTP-Load-Balancern. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud vergeben wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer praxisnahen Geschäftssituation anwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

In diesem Kurs lernen Sie Data Engineering on Google Cloud sowie die Rollen und Verantwortlichkeiten von Data Engineers kennen und sehen, wie diese mit den Angeboten von Google Cloud zusammenhängen. Außerdem erfahren Sie, wie Sie Herausforderungen im Bereich Data Engineering meistern können.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Grundlegende Sicherheitsfunktionen in Google Cloud implementieren weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen und Zuweisen von Rollen mit Identity and Access Management (IAM); Erstellen und Verwalten von Dienstkonten; Herstellen einer privaten Verbindung zwischen Virtual Private Cloud-Netzwerken (VPC); Beschränken des Anwendungszugriffs mithilfe von Identity-Aware Proxy; Verwalten von Schlüsseln und verschlüsselten Daten mit Cloud Key Management Service (KMS); und Erstellen eines privaten Kubernetes-Clusters.

Weitere Informationen

Wenn Sie als Einsteiger im Bereich Cloudentwicklung nach praktischen Übungen suchen, die über reine Google Cloud-Grundlagen hinausgehen, ist dieser Kurs genau das Richtige für Sie. Sie sammeln praktische Erfahrungen in Labs rund um Cloud Storage und andere wichtige Anwendungsdienste wie Cloud Monitoring und Cloud Functions. Dabei bauen Sie Ihre Fähigkeiten aus, um sie bei unterschiedlichen Google Cloud-Initiativen einsetzen zu können.

Weitere Informationen

MMit dem Skill-Logo zum Kurs Daten für Looker-Dashboards und ‑Berichte vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Filtern, Sortieren und Pivotieren von Daten, Zusammenführen der Ergebnisse von verschiedenen Looker-Explores sowie Verwenden von Funktionen und Operatoren zum Erstellen von Looker-Dashboards und ‑Berichten für Analyse und Visualisierung von Daten.

Weitere Informationen

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Weitere Informationen

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Weitere Informationen

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Weitere Informationen

Earn a skill badge by completing the Share Data Using Google Data Cloud skill badge course, where you will gain practical experience with Google Cloud Data Sharing Partners, which have proprietary datasets that customers can use for their analytics use cases. Customers subscribe to this data, query it within their own platform, then augment it with their own datasets and use their visualization tools for their customer facing dashboards.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Informationen aus BigQuery-Daten ableiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Schreiben von SQL-Abfragen, Abfragen öffentlicher Tabellen, Laden von Beispieldaten in BigQuery, Beheben häufig auftretender Syntaxfehler mithilfe der Abfragevalidierung in BigQuery und Erstellen von Berichten in Looker Studio durch Herstellen einer Verbindung zu BigQuery-Daten.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen von Pipelines für die Datentransformation nach BigQuery mithilfe von Dataprep von Trifacta; Extrahieren, Transformieren und Laden (ETL) von Workflows mit Cloud Storage, Dataflow und BigQuery; und Erstellen von Machine-Learning-Modellen mithilfe von BigQuery ML.

Weitere Informationen

Erhalten Sie ein Skill-Logo, indem Sie die Aufgabenreihe Streamanalyse in BigQuery abschließen. In dieser Reihe verwenden Sie Pub/Sub, Dataflow und BigQuery zusammen, um Daten für Analysen zu streamen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anwenden. Absolvieren Sie diese Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Weitere Informationen

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Weitere Informationen

Mit dem Skill-Logo Data Mesh mit Dataplex aufbauen weisen Sie die folgenden Kenntnisse nach: Aufbauen eines Data Mesh mit Dataplex für mehr Datensicherheit, Governance und Discovery in Google Cloud. Sie fördern und testen Ihre Fähigkeiten beim Tagging von Assets, Zuweisen von IAM-Rollen und Bewerten der Datenqualität in Dataplex.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Data Warehouse mit BigQuery erstellen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Daten zusammenführen, um neue Tabellen zu erstellen, Probleme mit Joins lösen, Daten mit Unions anhängen, nach Daten partitionierte Tabellen erstellen und JSON, Arrays sowie Strukturen in BigQuery nutzen. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud vergeben wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer praxisnahen Geschäftssituation anwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird erklärt, was verantwortungsbewusste Anwendung von KI bedeutet, warum sie wichtig ist und wie Google dies in seinen Produkten berücksichtigt. Darüber hinaus werden die 7 KI-Grundsätze von Google behandelt.

Weitere Informationen

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Weitere Informationen

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Weitere Informationen