Joaquin Lopez
Menjadi anggota sejak 2021
Bronze League
1800 poin
Menjadi anggota sejak 2021
Selesaikan badge keahlian tingkat menengah Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML untuk menunjukkan keterampilan Anda dalam hal berikut: membangun pipeline transformasi data ke BigQuery dengan Dataprep by Trifacta; menggunakan Cloud Storage, Dataflow, dan BigQuery untuk membangun alur kerja ekstrak, transformasi, dan pemuatan (ETL); serta membangun model machine learning menggunakan BigQuery ML.
Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud s ebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Selesaikan pengantar badge keahlian Mengimplementasikan Load Balancing di Compute Engine untuk menunjukkan keterampilan berikut ini: menulis perintah gcloud dan menggunakan Cloud Shell, membuat dan men-deploy virtual machine di Compute Engine, serta mengonfigurasi jaringan dan load balancer HTTP. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan badge keahlian ini, dan penilaian akhir Challenge Lab, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.