Selesaikan badge keahlian tingkat menengah Mengembangkan Aplikasi GenAI dengan Gemini dan Streamlit untuk menunjukkan keterampilan dalam hal berikut: membuat teks, menerapkan panggilan fungsi dengan Python SDK dan Gemini API, serta men-deploy aplikasi Streamlit dengan Cloud Run. Anda akan mempelajari berbagai cara memberikan perintah kepada Gemini untuk membuat teks, menggunakan Cloud Shell untuk menguji dan melakukan iterasi pada aplikasi Streamlit, lalu mengemasnya sebagai container Docker yang di-deploy di Cloud Run.
Menyelesaikan badge keahlian tingkat menengah Menginspeksi Dokumen Multimedia dengan Multimodalitas Gemini dan RAG Multimodal untuk menunjukkan keterampilan dalam hal berikut ini: menggunakan prompt multimodal untuk mengekstrak informasi dari data teks dan visual dengan menghasilkan deskripsi video, dan mengambil informasi tambahan di luar video menggunakan multimodalitas dengan Gemini; membangun metadata dokumen yang berisi teks dan gambar dengan mendapatkan semua potongan teks yang relevan, dan mencetak kutipan dengan menggunakan Multimodal Retrieval Augmented Generation (RAG) dengan Gemini. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan ke jarin…
Kursus ini memperkenalkan konsep responsible AI dan prinsip AI. Di dalamnya tercakup teknik untuk secara praktis mengidentifikasi keadilan dan bias serta memitigasi bias dalam praktik AI/ML. Kursus ini juga mengeksplorasi metode dan alat praktis untuk menerapkan praktik terbaik Responsible AI menggunakan produk Google Cloud dan alat open source.
Kursus ini memperkenalkan topik penting tentang privasi dan keamanan AI. Kursus ini mengeksplorasi metode dan alat praktis untuk menerapkan rekomendasi praktik privasi dan keamanan AI melalui penggunaan produk dan alat open source Google Cloud.
Kursus ini memperkenalkan konsep penafsiran dan transparansi AI. Kursus ini membahas pentingnya transparansi AI bagi developer dan engineer. Kursus ini juga mengeksplorasi metode dan alat praktis untuk membantu mencapai penafsiran dan transparansi, baik dalam model data maupun AI.
Menjelajahi teknologi, alat, dan aplikasi penelusuran yang didukung AI dalam kursus ini. Mempelajari penelusuran semantik dengan memanfaatkan embedding vektor, penelusuran campuran yang menggabungkan pendekatan semantik dan kata kunci, serta Retrieval-Augmented Generation (RAG) yang meminimalkan halusinasi AI sebagai agen AI yang di-grounding. Mendapatkan pengalaman praktis dengan Vertex AI Vector Search untuk membangun mesin telusur yang cerdas.
Kursus ini menjelaskan cara membuat model keterangan gambar menggunakan deep learning. Anda akan belajar tentang berbagai komponen model keterangan gambar, seperti encoder dan decoder, serta cara melatih dan mengevaluasi model. Pada akhir kursus ini, Anda akan dapat membuat model keterangan gambar Anda sendiri dan menggunakannya untuk menghasilkan teks bagi gambar.
Kursus ini memperkenalkan Anda pada arsitektur Transformer dan model Representasi Encoder Dua Arah dari Transformer (Bidirectional Encoder Representations from Transformers atau BERT). Anda akan belajar tentang komponen utama arsitektur Transformer, seperti mekanisme self-attention, dan cara penggunaannya untuk membangun model BERT. Anda juga akan belajar tentang berbagai tugas yang dapat memanfaatkan BERT, seperti klasifikasi teks, menjawab pertanyaan, dan inferensi natural language. Kursus ini diperkirakan memakan waktu sekitar 45 menit untuk menyelesaikannya.
Kursus ini memberi Anda sinopsis tentang arsitektur encoder-decoder, yang merupakan arsitektur machine learning yang canggih dan umum untuk tugas urutan-ke-urutan seperti terjemahan mesin, ringkasan teks, dan tanya jawab. Anda akan belajar tentang komponen utama arsitektur encoder-decoder serta cara melatih dan menyalurkan model ini. Dalam panduan lab yang sesuai, Anda akan membuat kode pada penerapan simpel arsitektur encoder-decoder di TensorFlow untuk pembuatan puisi dari awal.
Dalam kursus ini Anda akan diperkenalkan dengan mekanisme atensi, yakni teknik efektif yang membuat jaringan neural berfokus pada bagian tertentu urutan input. Anda akan mempelajari cara kerja atensi, cara penggunaannya untuk meningkatkan performa berbagai tugas machine learning, termasuk terjemahan mesin, peringkasan teks, dan menjawab pertanyaan.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu engineer mengelola infrastruktur. Anda akan mempelajari cara memerintah Gemini untuk menemukan dan memahami log aplikasi, membuat cluster GKE, dan menyelidiki cara membuat lingkungan build. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan alur kerja DevOps. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Dalam kursus ini, Anda akan mempelajari cara Gemini, kolaborator yang didukung AI generatif dari Google Cloud, dalam membantu engineer jaringan membuat, mengupdate, dan memelihara jaringan VPC. Anda akan mempelajari cara memanfaatkan Gemini untuk memberikan panduan spesifik untuk tugas-tugas jaringan Anda, lebih dari yang ditawarkan mesin telusur. Dengan menggunakan lab interaktif, Anda akan melihat cara Gemini dalam mempermudah urusan Anda dengan jaringan VPC Google Cloud. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Kursus ini dikhususkan untuk membekali Anda dengan pengetahuan dan alat yang diperlukan guna mengungkap tantangan unik yang dihadapi oleh tim MLOps saat men-deploy dan mengelola model AI Generatif, serta mengeksplorasi cara Vertex AI memberdayakan tim AI dalam menyederhanakan proses MLOps dan mencapai keberhasilan dalam project AI Generatif.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu Anda menggunakan produk dan layanan Google untuk mengembangkan, menguji, men-deploy, dan mengelola aplikasi. Dengan bantuan Gemini, Anda belajar cara mengembangkan dan membangun aplikasi web, memperbaiki error dalam aplikasi, mengembangkan pengujian, dan mengkueri data. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan siklus proses pengembangan software (SDLC). Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu Anda mengamankan lingkungan dan resource cloud. Anda akan mempelajari cara men-deploy contoh workload ke dalam lingkungan di Google Cloud, mengidentifikasi kesalahan konfigurasi keamanan dengan Gemini, dan memperbaiki kesalahan konfigurasi keamanan dengan Gemini. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan postur keamanan cloud. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu administrator menyediakan infrastruktur. Anda akan mempelajari cara memerintah Gemini untuk menjelaskan infrastruktur, men-deploy cluster GKE, dan memperbarui infrastruktur yang ada. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan alur kerja deployment GKE. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Dalam kursus ini, Anda akan mempelajari cara Gemini, kolaborator berteknologi AI generatif dari Google Cloud, membantu developer membangun aplikasi. Anda akan mempelajari cara memanfaatkan Gemini untuk menjelaskan kode, merekomendasikan layanan Google Cloud, dan membuat kode untuk aplikasi Anda. Dengan lab interaktif, Anda akan merasakan peningkatan alur kerja pengembangan aplikasi menggunakan Gemini. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Selesaikan badge keahlian pengantar Desain Perintah dalam Vertex AI untuk menunjukkan keterampilan Anda dalam hal berikut: rekayasa perintah, analisis gambar, dan teknik generatif multimodal, dalam Vertex AI. Pelajari cara membuat perintah yang efektif, memandu output AI generatif, dan menerapkan model Gemini dalam skenario pemasaran di dunia nyata. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan kepada jaringan Anda.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu menganalisis data pelanggan dan memprediksi penjualan produk. Anda juga akan mempelajari cara mengidentifikasi, mengategorikan, dan mengembangkan pelanggan baru menggunakan data pelanggan di BigQuery. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan analisis data dan alur kerja machine learning. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
Seiring semakin meningkatnya penggunaan Kecerdasan Buatan dan Machine Learning di kalangan perusahaan, proses membangunnya secara bertanggung jawab juga menjadi semakin penting. Membicarakan responsible AI mungkin lebih mudah bagi banyak orang daripada mempraktikkannya. Jika Anda tertarik untuk mempelajari cara mengoperasionalkan responsible AI dalam organisasi Anda, kursus ini cocok untuk Anda. Dalam kursus ini, Anda akan mempelajari bagaimana Google Cloud mengoperasionalkan responsible AI, dengan praktik terbaik dan pelajaran yang dapat dipetik. Hal ini berguna sebagai framework bagi Anda untuk membangun pendekatan responsible AI.
Kursus singkat tentang cara mengintegrasikan aplikasi dengan model Gemini 1.0 Pro di Google Cloud ini akan membantu Anda memahami Gemini API dan model AI generatif. Kursus ini menjelaskan cara mengakses model Gemini 1.0 Pro dan Gemini 1.0 Pro Vision dari kode. Anda dapat menguji kemampuan model dengan perintah teks, gambar, dan video dari aplikasi.
Kursus ini memperkenalkan Vertex AI Studio, sebuah alat untuk berinteraksi dengan model AI generatif, membuat prototipe ide bisnis, dan meluncurkannya ke dalam produksi. Melalui kasus penggunaan yang imersif, pelajaran menarik, dan lab interaktif, Anda akan menjelajahi siklus proses dari perintah ke produk dan mempelajari cara memanfaatkan Vertex AI Studio untuk aplikasi multimodal Gemini, desain perintah, rekayasa perintah, dan tuning model. Tujuan kursus ini adalah agar Anda dapat memanfaatkan potensi AI generatif dalam project Anda dengan Vertex AI Studio.
Kursus ini memperkenalkan model difusi, yaitu kelompok model machine learning yang belakangan ini menunjukkan potensinya dalam ranah pembuatan gambar. Model difusi mengambil inspirasi dari fisika, khususnya termodinamika. Dalam beberapa tahun terakhir, model difusi menjadi populer baik di dunia industri maupun penelitian. Model difusi mendasari banyak alat dan model pembuatan gambar yang canggih di Google Cloud. Kursus ini memperkenalkan Anda pada teori yang melandasi model difusi dan cara melatih serta men-deploy-nya di Vertex AI.
Kursus Penjelajah AI Generatif - Vertex AI adalah sekumpulan lab yang membahas cara menggunakan AI Generatif di Google Cloud. Melalui lab ini, Anda akan mempelajari cara menggunakan model dalam rangkaian Vertex AI PaLM API, termasuk text-bison, chat-bison, dan textembedding-gecko. Anda juga akan mempelajari desain perintah, praktik terbaik, serta cara menggunakannya untuk pencarian ide, klasifikasi teks, ekstraksi teks, peringkasan teks, dan banyak lagi. Anda juga akan mempelajari cara menyesuaikan model dasar dengan melatihnya melalui pelatihan kustom Vertex AI dan men-deploy-nya ke endpoint Vertex AI.
Ini adalah kursus pengantar pembelajaran mikro yang dimaksudkan untuk menjelaskan responsible AI, alasan pentingnya responsible AI, dan cara Google mengimplementasikan responsible AI dalam produknya. Kursus ini juga memperkenalkan 7 prinsip AI Google.
Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Dapatkan badge keahlian dengan menyelesaikan kursus Membangun Jaringan Google Cloud yang Aman yang membahas resource yang terkait dengan beberapa jaringan untuk membangun, menskalakan, dan mengamankan aplikasi Anda di Google Cloud.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This third course covers cloud automation and management tools and building secure networks.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This first course provides an overview of cloud computing, ways to use Google Cloud, and different compute options.
With each passing day, Generative AI becomes more integral, offering fresh perspectives and transformative possibilities. We invite you to join us and see for yourself how Gen AI shapes tomorrow and be a part of it by gaining hands-on experience with Google Cloud’s powerful Gen AI tools and techniques and earn your first Google Cloud Gen AI credential!
Earn a skill badge by completing the Secure Workloads in Google Kubernetes Engine quest, where you learn about security at scale on Google Kubernetes Engine (GKE) including how to: migrate containers from virtual machines to Google Kubernetes Engine, restrict network connections in GKE using firewalls and Network Policies, use role-based access controls (RBAC) in GKE, use Binary Authorization for security controls of your images, secure applications in GKE using 3 access levels: host, network, Kubernetes API, and harden GKE cluster configurations. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
Selesaikan badge keahlian tingkat menengah Mengoptimalkan Biaya untuk Google Kubernetes Engine untuk menunjukkan keterampilan dalam hal berikut: membuat dan mengelola cluster multi-tenant, memantau penggunaan resource berdasarkan namespace, mengonfigurasi penskalaan otomatis pada cluster dan pod untuk tujuan efisiensi, menyiapkan load balancing untuk mengoptimalkan distribusi resource, dan menerapkan pemeriksaan keaktifan serta kesiapan untuk memastikan kondisi aplikasi dan efektivitas biaya. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.
Selesaikan badge keahlian Men-deploy Aplikasi Kubernetes di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut ini: mengonfigurasi dan membangun image container Docker, membuat dan mengelola cluster Google Kubernetes Engine (GKE), memanfaatkan kubectl untuk pengelolaan cluster yang efisien, dan men-deploy aplikasi Kubernetes dengan praktik continuous delivery (CD) yang andal.
Quest level dasar ini berbeda dengan penawaran Qwiklabs lainnya. Semua lab yang termasuk dalam level ini telah diseleksi untuk membekali profesional IT dengan praktik langsung tentang berbagai topik dan layanan yang diujikan dalam Sertifikasi Google Cloud Certified Professional Cloud Architect . Dari IAM, hingga jaringan, dan penerapan Kubernetes Engine, quest ini tersusun atas sejumlah lab spesifik yang akan menguji pengetahuan Anda tentang GCP. Harap diketahui bahwa, meskipun praktik dengan lab ini akan meningkatkan keterampilan dan kemampuan Anda, sebaiknya Anda juga mempelajari panduan ujian serta referensi persiapan lain yang tersedia.
Dapatkan badge keahlian dengan menyelesaikan kursus Mengembangkan Jaringan Google Cloud Anda yang berisi pelajaran tentang berbagai cara untuk men-deploy dan memantau aplikasi, termasuk cara: menjelajahi peran IAM dan menambahkan/menghapus akses project, membuat jaringan VPC, men-deploy dan memantau VM Compute Engine, menulis kueri SQL, men-deploy dan memantau VM di Compute Engine, serta men-deploy aplikasi menggunakan Kubernetes dengan beberapa pendekatan deployment.
Welcome to the Learn To Earn Cloud Challenge! These eight labs give you a quick hands-on introduction to eight different GCP tools and services. At the end of each lab, you'll have another skill to add to your list. Complete this game to earn the Essentials game badge, and you'll be one step closer to collecting all four Learn to Earn Cloud Challenge badges (see "what's next" below for more information). Race the clock to increase your score and watch your name rise on the leaderboard. Good luck!
Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
Big data, machine learning, dan kecerdasan buatan menjadi topik komputasi yang populer saat ini, tetapi bidang tersebut sangat terspesialisasi dan materi pengantarnya sulit diperoleh. Untungnya, Google Cloud menyediakan layanan yang mudah digunakan dalam bidang tersebut, dan melalui kursus tingkat pengantar ini, Anda dapat mengambil langkah pertama dengan alat seperti BigQuery, Cloud Speech API, dan Video Intelligence.
Selesaikan badge keahlian tingkat menengah Mengembangkan Aplikasi Serverless dengan Firebase untuk menunjukkan keterampilan dalam hal berikut ini: membuat arsitektur dan membangun aplikasi web serverless dengan Firebase, memanfaatkan pengelolaan database Firestore, mengotomatiskan proses deployment menggunakan Cloud Build, dan mengintegrasikan fungsi Asisten Google ke dalam aplikasi.
Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Lingkungan Pengembangan Aplikasi di Google Cloud, yang memungkinkan Anda mempelajari cara membangun dan menghubungkan infrastruktur cloud yang berpusat pada penyimpanan menggunakan kemampuan dasar teknologi berikut: Cloud Storage, Identity and Access Management, Cloud Functions, dan Pub/Sub.
Earn the introductory skill badge by completing the Build a Website on Google Cloud skill badge course. This course is based on the Get Cooking in Cloud series and covers`:`Deploying a website on Cloud RunHosting a web app on Compute EngineCreating, deploying, and scaling your website on Google Kubernetes EngineMigrating from a monolithic application to a microservices architecture using Cloud Build
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Python. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Python applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Python applications straight away.
Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.
It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
Selesaikan badge keahlian tingkat menengah Membuat Model ML dengan BigQuery ML untuk menunjukkan keterampilan dalam hal berikut: membuat dan mengevaluasi model machine learning dengan BigQuery ML untuk membuat prediksi data. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini, dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.
Ingin membangun model ML dalam hitungan menit, bukan jam, hanya dengan menggunakan SQL? BigQuery ML memperluas akses machine learning dengan memungkinkan analis data membuat, melatih, mengevaluasi, dan memprediksi sesuatu dengan model machine learning menggunakan alat serta keterampilan SQL yang ada. Dalam rangkaian lab ini, Anda akan bereksperimen dengan beragam jenis model dan mempelajari ciri-ciri model yang baik.
Selesaikan pengantar badge keahlian Mengimplementasikan Load Balancing di Compute Engine untuk menunjukkan keterampilan berikut ini: menulis perintah gcloud dan menggunakan Cloud Shell, membuat dan men-deploy virtual machine di Compute Engine, serta mengonfigurasi jaringan dan load balancer HTTP. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan badge keahlian ini, dan penilaian akhir Challenge Lab, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Dalam quest level pendahuluan ini, Anda akan mendapatkan praktik langsung dengan aneka fitur dan layanan dasar Google Cloud Platform. Dasar-Dasar GCP adalah Quest pertama yang direkomendasikan bagi peserta kursus Google Cloud—Anda dapat memulai dengan pengetahuan yang minim atau tanpa pengetahuan sama sekali tentang cloud, dan selesai dengan pengalaman praktis yang dapat diterapkan pada project GCP pertama Anda. Mulai dari menulis perintah Cloud Shell dan menerapkan mesin virtual pertama Anda, hingga menjalankan aplikasi di Kubernetes Engine atau dengan load balancing, Dasar-Dasar GCP merupakan pengenalan terbaik pada fitur-fitur dasar platform cloud. Setiap lab disertai video berdurasi 1 menit yang akan memandu Anda memahami berbagai konsep penting.
Selesaikan badge keahlian pengantar Mendapatkan Insight dari Data BigQuery untuk menunjukkan keterampilan dalam hal berikut: menulis kueri SQL, membuat kueri tabel publik, memuat sampel data ke dalam BigQuery, memecahkan masalah error sintaksis umum dengan validator kueri di BigQuery, dan membuat laporan di Looker Studio dengan menghubungkannya ke data BigQuery.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud s ebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.