Shabbir Bata
회원 가입일: 2022
다이아몬드 리그
13235포인트
회원 가입일: 2022
이 과정에서는 Google Cloud에서 프로덕션 ML 시스템 배포, 평가, 모니터링, 운영을 위한 MLOps 도구와 권장사항을 소개합니다. MLOps는 프로덕션에서 ML 시스템을 배포, 테스트, 모니터링, 자동화하는 방법론입니다. 머신러닝 엔지니어링 전문가들은 배포된 모델의 지속적인 개선과 평가를 위해 도구를 사용합니다. 이들이 협력하거나 때론 그 역할을 하는 데이터 과학자는 고성능 모델을 빠르고 정밀하게 배포할 수 있도록 모델을 개발합니다.
In this course, you will learn how to easily scale AI from laptop to Cloud by bringing Ray and Vertex AI together. You will learn how to create a Ray cluster, connect to it, and run some simple Ray code. You will also learn how to integrate BigQuery seamlessly with Ray data.
이 과정에서는 Google Cloud의 생성형 AI 기반 도우미인 Gemini가 관리자의 인프라 프로비저닝을 어떻게 도와주는지 알아봅니다. 인프라에 관해 설명하고, GKE 클러스터를 배포하고, 기존 인프라를 업데이트하도록 Gemini에 프롬프트를 입력하는 방법을 배울 수 있습니다. 또한 실무형 실습을 통해 Gemini가 GKE 배포 워크플로를 어떻게 개선하는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
이 과정에서는 생성형 AI 모델을 배포하고 관리할 때 MLOps팀이 직면하는 고유한 과제를 파악하는 데 필요한 지식과 도구를 제공하고 Vertex AI가 어떻게 AI팀이 MLOps 프로세스를 간소화하고 생성형 AI 프로젝트에서 성공을 거둘 수 있도록 지원하는지 살펴봅니다.
이 과정에서는 엔지니어가 Google Cloud의 생성형 AI 기반 파트너인 Gemini의 도움을 받아 인프라를 관리하는 방법을 알아봅니다. 애플리케이션 로그를 찾고 이해하며, GKE 클러스터를 생성하고, 빌드 환경을 만드는 방법을 조사하도록 Gemini에 프롬프트를 입력하는 방법을 배울 수 있습니다. 실무형 실습을 통해 Gemini로 DevOps 워크플로가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
Migration from on-premises VMware to Google Cloud Compute Engine using Migrate to Virtual Machines (v5) using demo VM(s). It provides a proof-of-concept that walks you through the process of replicating a VM to doing test cutover and final cutover of the VM.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating data from Oracle to Cloud SQL using the Ora2Pg. An example scenario using sample data will be used to demonstrate the migration. Learners will complete an assessment quiz that focuses on the process of transferring schema, data and related processes to corresponding Google Cloud products.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of rehosting Oracle Workloads on Google Cloud.
Welcome to the course focusing on the Migration from Pivotal Cloud Foundry to Google Cloud. This program offers a practical demonstration that guides you through the step-by-step process of transitioning applications seamlessly between these two platforms. Throughout this course, you'll engage in hands-on exercises and demos, providing a proof-of-concept journey. This course provides insights into Pivotal Cloud Foundry and Tanzu Kubernetes Grid (TKG), and their roles in cloud infrastructure. It includes hands-on sessions for installing Tanzu CLI. You'll also learn to deploy management clusters efficiently, organize cloud resources, and create workload clusters. Additionally, you will perform a workload migration from Tanzu Kubernetes Grid to Google Kubernetes Engine (GKE) and containerize an applications on Google Cloud.
The Google Cloud Rapid Migration & Modernization Program (RaMP) is a holistic, end-to-end migration/modernization program that helps customers & partners leverage expertise and best practices, lower risk, control costs, and simplify a customer's path to cloud success. This course will give an overview of the program and some of the tools and best practices available to support customer migrations & modernizations.
This content is deprecated. Please see the latest version of the course, here.
이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.
기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.
이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.