Rejoindre Se connecter

Olona Xhakana

Date d'abonnement : 2024

Ligue de Diamant

85496 points
Concepts fondamentaux de Google Cloud : infrastructure de base Earned sept. 18, 2025 EDT
Explorer la transformation des données avec Google Cloud Earned juin 26, 2025 EDT
La transformation numérique avec Google Cloud Earned juin 26, 2025 EDT
Premiers pas avec Pub/Sub Earned juin 9, 2025 EDT
Understanding LookML in Looker Earned juin 6, 2025 EDT
Créer et déployer des solutions de machine learning sur Vertex Earned mai 29, 2025 EDT
Créer des modèles de ML avec BigQuery ML Earned mai 29, 2025 EDT
IA responsable pour les développeurs : équité et biais Earned mai 28, 2025 EDT
IA responsable pour les développeurs : confidentialité et sécurité Earned mai 28, 2025 EDT
Créer des applications d'IA générative sur Google Cloud Earned mai 28, 2025 EDT
IA responsable pour les développeurs : interprétabilité et transparence Earned mai 27, 2025 EDT
Utiliser des notebooks dans Vertex AI Earned mai 21, 2025 EDT
Machine Learning Operations (MLOps) avec Vertex AI : évaluation des modèles Earned mai 14, 2025 EDT
Présentation des grands modèles de langage Earned mai 13, 2025 EDT
Machine Learning Operations (MLOps) pour l'IA générative Earned mai 13, 2025 EDT
Présentation de l'IA générative Earned mai 13, 2025 EDT
Machine Learning Operations (MLOps) avec Vertex AI : gérer les caractéristiques Earned mai 13, 2025 EDT
Machine Learning Operations (MLOps) : premiers pas Earned mai 13, 2025 EDT
Préparer les données à utiliser pour les tableaux de bord et rapports Looker Earned avr. 23, 2025 EDT
Ingénierie des caractéristiques Earned mars 25, 2025 EDT
Machine learning au sein de l'entreprise Earned mars 25, 2025 EDT
Systèmes de machine learning de production Earned mars 21, 2025 EDT
Créer, entraîner et déployer des modèles de ML avec Keras sur Google Cloud Earned mars 20, 2025 EDT
Launching into Machine Learning - Français Earned mars 13, 2025 EDT
Présentation de l'IA et du machine learning sur Google Cloud Earned mars 11, 2025 EDT
Booster la productivité avec Gemini dans BigQuery Earned nov. 8, 2024 EST
Travailler avec des modèles Gemini dans BigQuery Earned nov. 8, 2024 EST
Introduction à l'ingénierie des données sur Google Cloud Earned nov. 8, 2024 EST
Traitement des données sans serveur avec Dataflow : développer des pipelines Earned nov. 7, 2024 EST
Créer un maillage de données avec Dataplex Earned nov. 4, 2024 EST
Ingénierie des données pour la modélisation prédictive avec BigQuery ML Earned nov. 4, 2024 EST
Créer un entrepôt de données avec BigQuery Earned oct. 11, 2024 EDT
Préparer des données pour les API de ML sur Google Cloud Earned oct. 7, 2024 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Français Earned sept. 17, 2024 EDT
Concevoir des systèmes d'analyse de flux résilients sur Google Cloud Earned sept. 16, 2024 EDT
Créer des pipelines de données en batch sur Google Cloud Earned sept. 13, 2024 EDT
Traitement des données sans serveur avec Dataflow : opérations Earned sept. 10, 2024 EDT
Traitement des données sans serveur avec Dataflow : principes de base Earned sept. 9, 2024 EDT
Moderniser des lacs de données et des entrepôts de données avec Google Cloud Earned sept. 5, 2024 EDT
Se préparer à devenir Professional Data Engineer Earned août 27, 2024 EDT

"Concepts fondamentaux de Google Cloud : infrastructure de base" présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.

En savoir plus

La technologie cloud est une grande source de valeur pour les entreprises. En combinant le potentiel de cette technologie avec celui des données, il est possible de créer encore plus de valeur et d'offrir de nouvelles expériences client. "Explorer la transformation des données avec Google Cloud" vous fait découvrir la valeur que les données peuvent apporter à une entreprise et les façons dont Google Cloud peut les rendre utiles et accessibles. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il a pour but d'aider les participants à évoluer dans leur poste et à façonner l'avenir de leur entreprise.

En savoir plus

La technologie cloud et la transformation numérique suscitent beaucoup d'enthousiasme, mais elles génèrent aussi souvent beaucoup de questions laissées sans réponse. Par exemple : Qu'est-ce que la technologie cloud ? Qu'entend-on par transformation numérique ? Que peut vous apporter la technologie cloud ? Et par où commencer ? Si vous vous êtes déjà posé une de ces questions, vous êtes au bon endroit. Ce cours offre un aperçu des opportunités et des défis que les entreprises peuvent rencontrer lors de leur transformation numérique. Si vous souhaitez découvrir les technologies cloud afin de pouvoir exceller dans votre rôle et contribuer à bâtir l'avenir de votre entreprise, ce cours d'introduction sur la transformation numérique est pour vous. Il fait partie du parcours de formation Cloud Digital Leader.

En savoir plus

Obtenez un badge de compétence en suivant le cours Premiers pas avec Pub/Sub dans lequel vous apprendrez à utiliser Pub/Sub depuis la console Cloud. Vous découvrirez également comment les jobs Cloud Scheduler peuvent vous faire gagner du temps et quand Pub/Sub Lite permet de réaliser des économies sur l'ingestion d'événements.

En savoir plus

In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.

En savoir plus

Obtenez un badge de compétence en terminant le cours intermédiaire Créer et déployer des solutions de machine learning sur Vertex. Vous y apprendrez à utiliser la plate-forme Vertex AI de Google Cloud, AutoML et les services d'entraînement personnalisés pour entraîner, évaluer, régler, expliquer et déployer des modèles de machine learning. Ce cours, qui ouvre droit à un badge de compétence, est destiné aux data scientists et aux ingénieurs en machine learning. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Terminez le cours intermédiaire Créer des modèles de ML avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'évaluation de modèles de machine learning avec BigQuery ML pour générer des prédictions de données. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Ce cours présente le concept d'IA responsable et les principes associés. Il met en avant des techniques permettant d'identifier des données équitables ou biaisées, et de limiter les biais lors de l'utilisation de l'IA/du ML. Vous découvrirez des méthodes pratiques et des outils pour mettre en place de bonnes pratiques d'IA responsable à l'aide des produits Google Cloud et des outils Open Source.

En savoir plus

Ce cours présente des points importants au sujet de la confidentialité et de la sécurité de l'IA. Vous découvrirez des méthodes pratiques et des outils pour mettre en place des pratiques recommandées de confidentialité et de sécurité de l'IA à l'aide de produits Google Cloud et d'outils Open Source.

En savoir plus

Les applications d'IA générative peuvent créer de nouvelles expériences utilisateur qu'il était quasiment impossible d'obtenir avant l'invention des grands modèles de langage (LLM). En tant que développeur d'applications, comment pouvez-vous utiliser l'IA générative pour créer des applications interactives et performantes sur Google Cloud ? Dans ce cours, vous allez découvrir les applications d'IA générative, et comment vous pouvez utiliser la conception de requêtes et la génération augmentée par récupération (RAG) pour créer des applications performantes à l'aide de LLM. Vous allez vous familiariser avec une architecture prête pour la production qui peut être utilisée pour les applications d'IA générative, et vous allez créer une application de chat basée sur des LLM et sur le RAG.

En savoir plus

Ce cours présente les concepts d'interprétabilité et de transparence de l'IA. Il explique en quoi la transparence de l'IA est importante pour les développeurs et les ingénieurs. Il explore des méthodes et des outils pratiques permettant d'atteindre l'interprétabilité et la transparence des modèles d'IA et des données.

En savoir plus

Ce cours est une introduction aux notebooks Vertex AI, des environnements basés sur des notebooks Jupyter qui proposent une plate-forme unifiée pour l'ensemble du workflow de machine learning, de la préparation des données jusqu'au déploiement et à la surveillance des modèles. Le cours aborde les sujets suivants : (1) Les différents types de notebooks Vertex AI et leurs fonctionnalités, et (2) comment en créer et les gérer.

En savoir plus

Ce cours apporte aux professionnels du machine learning les techniques, les bonnes pratiques et les outils essentiels pour évaluer les modèles d'IA prédictive et générative. L'évaluation des modèles est primordiale pour s'assurer que les systèmes de ML fournissent des résultats fiables, précis et de haut niveau en production. Les participants acquerront une connaissance approfondie de diverses métriques et méthodologies d'évaluation, ainsi que de leur application appropriée dans différents types de modèles et tâches. Le cours mettra l'accent sur les défis uniques posés par les modèles d'IA générative et proposera des stratégies pour les relever efficacement. Grâce à la plate-forme Vertex AI de Google Cloud, les participants apprendront à implémenter des processus d'évaluation rigoureux pour la sélection, l'optimisation et la surveillance continue des modèles.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les participants s'entraîneront à utiliser l'ingestion en flux continu de Vertex AI Feature Store au niveau du SDK.

En savoir plus

Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les ingénieurs en machine learning utilisent des outils pour améliorer et évaluer en permanence les modèles déployés. Ils collaborent avec des data scientists (ou peuvent occuper ce poste) qui développent des modèles permettant de déployer de manière rapide et rigoureuse les solutions de machine learning les plus performantes.

En savoir plus

Terminez le cours d'introduction Préparer les données à utiliser pour les tableaux de bord et rapports Looker pour recevoir un badge démontrant vos compétences dans les domaines suivants : le filtrage, le tri et le croisement de données ; la fusion des résultats de différentes explorations Looker ; et l'utilisation de fonctions et d'opérateurs pour créer des tableaux de bord et des rapports Looker en vue de l'analyse et de la visualisation des données.

En savoir plus

Ce cours présente les avantages liés à l'utilisation de Vertex AI Feature Store, ainsi que la manière d'améliorer la précision des modèles de ML et de déterminer les colonnes de données présentant les caractéristiques les plus utiles. Ce cours inclut également du contenu et des ateliers portant sur l'ingénierie des caractéristiques à l'aide de BigQuery ML, Keras et TensorFlow.

En savoir plus

Ce cours présente une approche pratique du workflow de ML avec une étude de cas dans laquelle une équipe est confrontée à plusieurs exigences métier et cas d'utilisation de ML. Cette équipe doit comprendre quels outils sont nécessaires pour gérer et gouverner les données, et trouver la meilleure approche pour les prétraiter. On présente à cette équipe trois options de création de modèles de ML pour deux cas d'utilisation spécifiques. Ce cours explique pourquoi l'équipe tire parti des avantages d'AutoML, de BigQuery ML ou de l'entraînement personnalisé pour atteindre ses objectifs.

En savoir plus

Dans ce cours, nous abordons en détail les composants et les bonnes pratiques de construction de systèmes de ML hautes performances dans des environnements de production. Nous verrons aussi certaines des considérations les plus courantes concernant la construction de ces systèmes, telles que l'entraînement statique, l'entraînement dynamique, l'inférence statique, l'inférence dynamique, les tâches TensorFlow distribuées et les TPU. Ce cours a pour objectif d'explorer les caractéristiques d'un bon système de ML, au-delà de sa capacité à effectuer des prédictions correctes.

En savoir plus

Ce cours porte sur la création de modèles de ML à l'aide de TensorFlow et Keras, l'amélioration de la précision des modèles de ML et l'écriture de modèles de ML pour une utilisation évolutive.

En savoir plus

Le cours commence par une discussion sur les données : vous découvrirez comment améliorer leur qualité et effectuer des analyses exploratoires. Ensuite, nous vous présenterons Vertex AI AutoML et vous expliquerons comment créer, entraîner et déployer un modèle de machine learning (ML) sans écrire une ligne de code. Vous découvrirez également les avantages de BigQuery ML. Enfin, nous verrons comment optimiser un modèle de ML, et en quoi la généralisation ainsi que l'échantillonnage peuvent vous aider à évaluer la qualité des modèles de ML destinés à un entraînement personnalisé.

En savoir plus

Ce cours présente les solutions d'IA et de machine learning (ML) de Google Cloud permettant de développer des projets d'IA prédictive et générative. Il décrit les technologies, produits et outils disponibles tout au long du cycle de vie des données à l'IA, en englobant les éléments de base, le développement et les solutions d'IA. Son but est d'aider les data scientists, les développeurs d'IA et les ingénieurs en ML à améliorer leurs compétences et connaissances par le biais d'expériences d'apprentissage captivantes et d'exercices pratiques.

En savoir plus

Ce cours présente Gemini dans BigQuery, une suite de fonctionnalités basées sur l'IA conçue pour faciliter le workflow "des données à l'IA". Ces fonctionnalités incluent l'exploration et la préparation des données, la génération et le dépannage de code, ainsi que la découverte et la visualisation du workflow. Au moyen d'explications conceptuelles, d'un cas d'utilisation concret et d'ateliers pratiques, le cours explique aux professionnels des données comment booster leur productivité et accélérer le pipeline de développement.

En savoir plus

Ce cours montre comment utiliser des modèles d'IA/de ML pour des tâches d'IA générative dans BigQuery. À travers un cas d'utilisation pratique faisant intervenir la gestion de la relation client, vous étudierez le workflow de résolution d'un problème métier à l'aide de modèles Gemini. Pour faciliter la compréhension, le cours fournit également des instructions détaillées tout au long du codage des solutions à l'aide de requêtes SQL et de Notebooks Python.

En savoir plus

Dans ce cours, vous allez explorer l'ingénierie de données sur Google Cloud, les rôles et responsabilités des ingénieurs de données, et la façon dont ces éléments se retrouvent dans les offres Google Cloud. Vous apprendrez également à relever les défis liés à l'ingénierie de données.

En savoir plus

Dans ce deuxième volet de la série de cours sur Dataflow, nous allons nous intéresser de plus près au développement de pipelines à l'aide du SDK Beam. Nous allons commencer par passer en revue les concepts d'Apache Beam. Nous allons ensuite parler du traitement des données par flux à l'aide de fenêtres, de filigranes et de déclencheurs. Nous passerons ensuite aux options de sources et de récepteurs dans vos pipelines, aux schémas pour présenter vos données structurées, et nous verrons comment effectuer des transformations avec état à l'aide des API State et Timer. Nous aborderons ensuite les bonnes pratiques qui vous aideront à maximiser les performances de vos pipelines. Vers la fin du cours, nous présentons le langage SQL et les DataFrames pour représenter votre logique métier dans Beam, et nous expliquons comment développer des pipelines de manière itérative à l'aide des notebooks Beam.

En savoir plus

Terminez le cours d'introduction Créer un maillage de données avec Dataplex pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création d'un maillage de données avec Dataplex pour faciliter la sécurité, la gouvernance et la découverte des données sur Google Cloud. Cela comprend l'ajout de tags à des éléments, l'attribution de rôles IAM et l'évaluation de la qualité des données dans Dataplex.

En savoir plus

Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML.

En savoir plus

Terminez le cours intermédiaire Créer un entrepôt de données avec BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : la jointure de données pour créer des tables, la résolution des problèmes liés aux jointures, l'ajout de données avec des unions, la création de tables partitionnées par date, et l'utilisation d'objets JSON, ARRAY et STRUCT dans BigQuery. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge

En savoir plus

Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.

En savoir plus

Intégrer le machine learning à des pipelines de données renforce la capacité à dégager des insights des données. Ce cours passera en revue plusieurs façons d'intégrer le machine learning à des pipelines de données sur Google Cloud. Vous découvrirez AutoML pour les cas ne nécessitant que peu de personnalisation (voire aucune), ainsi que Notebooks et BigQuery ML pour les situations qui requièrent des capacités de machine learning plus adaptées. Enfin, vous apprendrez à utiliser des solutions de machine learning en production avec Vertex AI.

En savoir plus

Le traitement de flux de données est une pratique de plus en plus courante, car elle permet aux entreprises d'obtenir des métriques sur leurs activités commerciales en temps réel. Ce cours explique comment créer des pipelines de flux de données sur Google Cloud et présente Pub/Sub, une solution qui permet de gérer des données de flux entrants. Par ailleurs, vous verrez comment appliquer des agrégations et des transformations à des flux de données à l'aide de Dataflow, mais aussi comment stocker des enregistrements traités dans BigQuery ou Bigtable pour qu'ils puissent être analysés. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de flux de données sur Google Cloud à l'aide de Qwiklabs.

En savoir plus

Les pipelines de données s'inscrivent généralement dans l'un des paradigmes EL (extraction et chargement), ELT (extraction, chargement et transformation) ou ETL (extraction, transformation et chargement). Ce cours indique quel paradigme utiliser pour le traitement de données par lot en fonction du contexte. Il présente également plusieurs technologies Google Cloud de transformation des données, y compris BigQuery, l'exécution de Spark sur Dataproc, les graphiques de pipelines dans Cloud Data Fusion et le traitement des données sans serveur avec Dataflow. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de données sur Google Cloud à l'aide de Qwiklabs.

En savoir plus

Dans le dernier volet de la série de cours sur Dataflow, nous allons présenter les composants du modèle opérationnel de Dataflow. Nous examinerons les outils et techniques permettant de résoudre les problèmes et d'optimiser les performances des pipelines. Nous passerons ensuite en revue les bonnes pratiques en matière de test, de déploiement et de fiabilité pour les pipelines Dataflow. Nous terminerons par une présentation des modèles, qui permettent de faire évoluer facilement les pipelines Dataflow pour les adapter aux organisations comptant des centaines d'utilisateurs. Ces leçons vous aideront à vous assurer que votre plate-forme de données est stable et résiliente face aux imprévus.

En savoir plus

Ce cours est le premier d'une série en trois volets sur le traitement des données sans serveur avec Dataflow. Dans ce premier cours, nous allons commencer par rappeler ce qu'est Apache Beam et sa relation avec Dataflow. Ensuite, nous aborderons la vision d'Apache Beam et les avantages de son framework de portabilité, qui permet aux développeurs d'utiliser le langage de programmation et le backend d'exécution de leur choix. Nous vous montrerons aussi comment séparer le calcul du stockage et économiser de l'argent grâce à Dataflow, puis nous examinerons les interactions entre les outils de gestion de l'identification et des accès avec vos pipelines Dataflow. Enfin, nous verrons comment implémenter le modèle de sécurité adapté à votre cas d'utilisation sur Dataflow.

En savoir plus

Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Ingénierie des données sur Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Créer des pipelines de données en batch sur Google Cloud".

En savoir plus

Ce cours a pour objectif d'aider les participants à créer un plan de formation pour l'examen de certification Professional Data Engineer. Les participants découvriront l'étendue et le champ d'application des domaines abordés lors de l'examen, puis évalueront leur niveau de préparation à l'examen et créeront leur propre plan de formation.

En savoir plus