Gabung Login

Guillermo Antonio Rey Sánchez

Menjadi anggota sejak 2024

Diamond League

48065 poin
Create Agents with Generative Playbooks Earned Mei 30, 2025 EDT
Mempercepat pertukaran pengetahuan dengan Agentspace Earned Mei 1, 2025 EDT
Agen AI Generatif: Mentransformasi Organisasi Anda Earned Apr 30, 2025 EDT
Aplikasi AI Generatif: Mentransformasi Pekerjaan Anda Earned Apr 30, 2025 EDT
AI Generatif: Memahami Lanskap Earned Apr 30, 2025 EDT
AI Generatif: Memahami Konsep Dasar Earned Apr 30, 2025 EDT
AI Generatif: Lebih dari Sekadar Chatbot Earned Apr 30, 2025 EDT
Pengantar Data Engineering di Google Cloud Earned Des 23, 2024 EST
Bekerja dengan Model Gemini di BigQuery Earned Des 18, 2024 EST
Meningkatkan Produktivitas dengan Gemini in BigQuery Earned Des 14, 2024 EST
Membangun Mesh Data dengan Dataplex Earned Des 12, 2024 EST
Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML Earned Des 9, 2024 EST
Membangun Data Warehouse dengan BigQuery Earned Des 5, 2024 EST
Menyiapkan Data untuk ML API di Google Cloud Earned Des 3, 2024 EST
Serverless Data Processing with Dataflow: Operations Earned Nov 28, 2024 EST
Serverless Data Processing with Dataflow: Develop Pipelines Earned Nov 28, 2024 EST
Serverless Data Processing with Dataflow: Foundations Earned Nov 20, 2024 EST
Smart Analytics, Machine Learning, and AI on Google Cloud Earned Nov 20, 2024 EST
Build Streaming Data Pipelines on Google Cloud Earned Nov 19, 2024 EST
Mengintegrasikan Aplikasi dengan Gemini 1.0 Pro di Google Cloud Earned Nov 17, 2024 EST
Membangun Aplikasi AI yang Bermanfaat dengan Gemini dan Imagen Earned Nov 17, 2024 EST
Build Batch Data Pipelines on Google Cloud Earned Nov 17, 2024 EST
Men-deploy Aplikasi Kubernetes di Google Cloud Earned Nov 16, 2024 EST
Build Data Lakes and Data Warehouses on Google Cloud Earned Nov 14, 2024 EST
Preparing for your Professional Data Engineer Journey Earned Nov 11, 2024 EST

This course will teach you how to build conversational experiences for Conversational Agents using Generative Playbooks. You'll start with an introduction to playbooks and learn how to set up your first one. You'll also learn about the importance of testing, as well as key production considerations like quota limits and integration. The course concludes with a case study that shows how to use playbooks for generative steering.

Pelajari lebih lanjut

Padukan keahlian Google di bidang penelusuran dan AI dengan Agentspace, alat perusahaan yang dirancang untuk membantu karyawan menemukan informasi spesifik dari penyimpanan dokumen, email, chat, sistem tiket, dan sumber data lain, semuanya dari satu kotak penelusuran. Asisten Agentspace juga dapat membantu Anda bertukar pikiran, melakukan riset, membuat kerangka dokumen, serta mengambil tindakan seperti mengundang rekan kerja ke acara kalender untuk mempercepat pekerjaan dan kolaborasi berbasis pengetahuan dalam berbagai bentuk.

Pelajari lebih lanjut

Agen AI Generatif: Mentransformasi Organisasi Anda adalah kursus kelima dan terakhir dari jalur pembelajaran Generative AI Leader. Kursus ini membahas cara organisasi menggunakan agen AI generatif kustom untuk membantu mengatasi tantangan bisnis tertentu. Anda akan mendapatkan praktik langsung dalam membangun agen AI generatif dasar, sambil mempelajari komponen agen ini, seperti model, loop penalaran, dan alat.

Pelajari lebih lanjut

Aplikasi AI Generatif: Mentransformasi Pekerjaan Anda adalah kursus keempat dari jalur pembelajaran Generative AI Leader. Kursus ini memperkenalkan aplikasi AI generatif Google, seperti Gemini untuk Workspace dan NotebookLM. Kursus ini memandu Anda memahami konsep seperti grounding, retrieval augmented generation, menyusun perintah yang efektif, dan membangun alur kerja otomatis.

Pelajari lebih lanjut

AI Generatif: Memahami Lanskap adalah kursus ketiga dari alur pembelajaran Generative AI Leader. AI generatif mengubah cara kita bekerja dan berinteraksi dengan dunia di sekitar kita. Namun, sebagai seorang pemimpin, bagaimana Anda dapat memanfaatkan kekuatan AI untuk mendorong hasil bisnis yang nyata? Dalam kursus ini, Anda akan mempelajari berbagai lapisan dalam membangun solusi AI generatif, penawaran Google Cloud, dan faktor yang perlu dipertimbangkan saat memilih solusi.

Pelajari lebih lanjut

AI Generatif: Memahami Konsep Dasar adalah kursus kedua dari alur pembelajaran Generative AI Leader. Dalam kursus ini, Anda akan mempelajari konsep dasar AI generatif. Anda akan mempelajari perbedaan antara AI, ML, dan AI generatif serta mempelajari bagaimana berbagai jenis data memungkinkan AI generatif mengatasi tantangan bisnis. Anda juga akan mendapatkan insight tentang strategi Google Cloud untuk mengatasi keterbatasan model dasar dan tantangan utama dalam pengembangan dan deployment AI yang bertanggung jawab dan aman.

Pelajari lebih lanjut

AI Generatif: Lebih dari Sekadar Chatbot adalah kursus pertama dari alur pembelajaran Generative AI Leader. Kursus ini tidak memiliki prasyarat. Kursus ini bertujuan untuk melampaui pemahaman dasar tentang chatbot guna mengeksplorasi potensi sebenarnya dari AI generatif untuk organisasi Anda. Anda akan mempelajari konsep seperti model dasar dan rekayasa perintah, yang penting untuk memanfaatkan kekuatan AI generatif. Kursus ini juga memandu Anda melalui pertimbangan penting yang harus Anda buat saat mengembangkan strategi AI generatif yang sukses untuk organisasi Anda.

Pelajari lebih lanjut

Dalam kursus ini, Anda akan belajar tentang data engineering on Google Cloud, peran dan tanggung jawab data engineer, dan bagaimana hal tersebut terhubung dengan penawaran yang disediakan oleh Google Cloud. Anda juga akan mempelajari cara untuk mengatasi tantangan terkait data engineering.

Pelajari lebih lanjut

Kursus ini menunjukkan cara menggunakan model AI/ML untuk tugas-tugas AI generatif di BigQuery. Melalui kasus penggunaan praktis yang melibatkan pengelolaan hubungan pelanggan (CRM), Anda akan mempelajari alur kerja pemecahan masalah bisnis dengan model Gemini. Untuk memudahkan pemahaman, kursus ini juga menyediakan panduan langkah demi langkah melalui solusi coding menggunakan kueri SQL dan notebook Python.

Pelajari lebih lanjut

Kursus ini mengeksplorasi Gemini in BigQuery, yakni paket fitur yang didukung AI untuk membantu alur kerja data ke AI. Paket fitur ini meliputi eksplorasi dan persiapan data, pembuatan kode dan pemecahan masalah, serta penemuan dan visualisasi alur kerja. Melalui penjelasan konseptual, kasus penggunaan praktis, dan lab interaktif, kursus ini akan membantu para praktisi data dalam meningkatkan produktivitas mereka dan mempercepat pipeline pengembangan.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Membangun Mesh Data dengan Dataplex untuk menunjukkan keterampilan dalam hal berikut: membuat mesh data dengan Dataplex untuk memfasilitasi keamanan, tata kelola, dan penemuan data di Google Cloud. Anda akan berlatih dan menguji keterampilan Anda dalam memberikan tag pada aset, menetapkan peran IAM, dan menilai kualitas data di Dataplex.

Pelajari lebih lanjut

Selesaikan badge keahlian tingkat menengah Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML untuk menunjukkan keterampilan Anda dalam hal berikut: membangun pipeline transformasi data ke BigQuery dengan Dataprep by Trifacta; menggunakan Cloud Storage, Dataflow, dan BigQuery untuk membangun alur kerja ekstrak, transformasi, dan pemuatan (ETL); serta membangun model machine learning menggunakan BigQuery ML.

Pelajari lebih lanjut

Selesaikan badge keahlian tingkat menengah Membangun Data Warehouse dengan BigQuery untuk menunjukkan keterampilan Anda dalam hal berikut: menggabungkan data untuk membuat tabel baru, memecahkan masalah penggabungan, menambahkan data dengan union, membuat tabel berpartisi tanggal, serta menggunakan JSON, array, dan struct di BigQuery. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API.

Pelajari lebih lanjut

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

Pelajari lebih lanjut

In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.

Pelajari lebih lanjut

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Pelajari lebih lanjut

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Pelajari lebih lanjut

In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.

Pelajari lebih lanjut

Kursus singkat tentang cara mengintegrasikan aplikasi dengan model Gemini 1.0 Pro di Google Cloud ini akan membantu Anda memahami Gemini API dan model AI generatif. Kursus ini menjelaskan cara mengakses model Gemini 1.0 Pro dan Gemini 1.0 Pro Vision dari kode. Anda dapat menguji kemampuan model dengan perintah teks, gambar, dan video dari aplikasi.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Membangun Aplikasi AI yang Bermanfaat dengan Gemini dan Imagen untuk menunjukkan keterampilan dalam hal berikut: pengenalan citra, natural language processing, pembuatan gambar menggunakan model Gemini dan Imagen Google yang canggih, serta men-deploy aplikasi di platform Vertex AI.

Pelajari lebih lanjut

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

Pelajari lebih lanjut

Selesaikan badge keahlian Men-deploy Aplikasi Kubernetes di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut ini: mengonfigurasi dan membangun image container Docker, membuat dan mengelola cluster Google Kubernetes Engine (GKE), memanfaatkan kubectl untuk pengelolaan cluster yang efisien, dan men-deploy aplikasi Kubernetes dengan praktik continuous delivery (CD) yang andal.

Pelajari lebih lanjut

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Pelajari lebih lanjut

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Pelajari lebih lanjut