Partecipa Accedi

Jeremy Mah Zhee Kein

Membro dal giorno 2024

Campionato Argento

49785 punti
Engineer Data for Predictive Modeling with BigQuery ML Earned mar 1, 2024 EST
Build a Data Warehouse with BigQuery Earned feb 29, 2024 EST
Prepara i dati per le API ML su Google Cloud Earned feb 23, 2024 EST
Serverless Data Processing with Dataflow: Operations Earned feb 22, 2024 EST
Serverless Data Processing with Dataflow: Develop Pipelines Earned feb 20, 2024 EST
Serverless Data Processing with Dataflow: Foundations Earned feb 15, 2024 EST
Smart Analytics, Machine Learning, and AI on Google Cloud - Italiano Earned feb 14, 2024 EST
Building Resilient Streaming Systems on Google Cloud Platform Earned feb 14, 2024 EST
Creazione di pipeline di dati in batch su Google Cloud Earned feb 13, 2024 EST
Modernizzazione di data lake e data warehouse con Google Cloud Earned feb 9, 2024 EST
Google Cloud Big Data and Machine Learning Fundamentals - Italiano Earned feb 7, 2024 EST
Preparing for your Professional Data Engineer Journey Earned feb 6, 2024 EST
Implementa il bilanciamento del carico su Compute Engine Earned gen 28, 2024 EST
Crea l'infrastruttura con Terraform su Google Cloud Earned gen 28, 2024 EST
Configura un ambiente di sviluppo di app su Google Cloud Earned gen 27, 2024 EST
Logging and Monitoring in Google Cloud Earned gen 26, 2024 EST
Getting Started with Terraform for Google Cloud Earned gen 25, 2024 EST
Introduzione a Google Kubernetes Engine Earned gen 23, 2024 EST
Infrastruttura Google Cloud elastica: scalabilità e automazione Earned gen 23, 2024 EST
Infrastruttura Google Cloud di base: servizi principali Earned gen 21, 2024 EST
Infrastruttura Google Cloud di base: fondamenti Earned gen 19, 2024 EST
Google Cloud Fundamentals: Core Infrastructure - Italiano Earned gen 18, 2024 EST
Preparing for Your Associate Cloud Engineer Journey Earned gen 17, 2024 EST

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Scopri di più

Complete the intermediate Build a Data Warehouse with BigQuery skill badge to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Scopri di più

Ottieni il corso intermedio con badge delle competenze Prepara i dati per le API ML su Google Cloud per dimostrare le tue competenze nei seguenti ambiti: pulizia dei dati con Dataprep di Trifacta, esecuzione delle pipeline di dati in Dataflow, creazione dei cluster ed esecuzione dei job Apache Spark in Dataproc e richiamo delle API ML tra cui l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text e l'API Video Intelligence. Un badge delle competenze è un badge digitale esclusivo rilasciato da Google Cloud come riconoscimento della tua competenza nell'uso di prodotti e servizi Google Cloud dopo aver messo alla prova la tua capacità di applicare le tue conoscenze in un ambiente interattivo pratico. Completa questo corso con badge delle competenze e il Challenge Lab finale di valutazione per ricevere un badge delle competenze da condividere con la tua rete.

Scopri di più

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

Scopri di più

In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.

Scopri di più

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Scopri di più

L'integrazione del machine learning nelle pipeline di dati aumenta la capacità di estrarre insight dai dati. Questo corso illustra i modi in cui il machine learning può essere incluso nelle pipeline di dati su Google Cloud. Per una personalizzazione minima o nulla, il corso tratta di AutoML. Per funzionalità di machine learning più personalizzate, il corso introduce Notebooks e BigQuery Machine Learning (BigQuery ML). Inoltre, il corso spiega come mettere in produzione soluzioni di machine learning utilizzando Vertex AI.

Scopri di più

This 1-week, accelerated on-demand course builds upon Google Cloud Platform Big Data and Machine Learning Fundamentals. Through a combination of video lectures, demonstrations, and hands-on labs, you'll learn to build streaming data pipelines using Google cloud Pub/Sub and Dataflow to enable real-time decision making. You will also learn how to build dashboards to render tailored output for various stakeholder audiences.

Scopri di più

Le pipeline di dati in genere rientrano in uno dei paradigmi EL (Extract, Load), ELT (Extract, Load, Transform) o ETL (Extract, Transform, Load). Questo corso descrive quale paradigma dovrebbe essere utilizzato e quando per i dati in batch. Inoltre, questo corso tratta diverse tecnologie su Google Cloud per la trasformazione dei dati, tra cui BigQuery, l'esecuzione di Spark su Dataproc, i grafici della pipeline in Cloud Data Fusion e trattamento dati serverless con Dataflow. Gli studenti fanno esperienza pratica nella creazione di componenti della pipeline di dati su Google Cloud utilizzando Qwiklabs.

Scopri di più

I due componenti chiave di qualsiasi pipeline di dati sono costituiti dai data lake e dai data warehouse. In questo corso evidenzieremo i casi d'uso per ogni tipo di spazio di archiviazione e approfondiremo i dettagli tecnici delle soluzioni di data lake e data warehouse disponibili su Google Cloud. Inoltre, descriveremo il ruolo di un data engineer, illustreremo i vantaggi di una pipeline di dati di successo per le operazioni aziendali ed esamineremo i motivi per cui il data engineering dovrebbe essere eseguito in un ambiente cloud. Questo è il primo corso della serie Data engineering su Google Cloud. Dopo il completamento di questo corso, iscriviti al corso Creazione di pipeline di dati in batch su Google Cloud.

Scopri di più

Questo corso presenta i prodotti e i servizi per big data e di machine learning di Google Cloud che supportano il ciclo di vita dai dati all'IA. Esplora i processi, le sfide e i vantaggi della creazione di una pipeline di big data e di modelli di machine learning con Vertex AI su Google Cloud.

Scopri di più

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Scopri di più

Ottieni il badge delle competenze introduttivo Implementa il bilanciamento del carico su Compute Engine per dimostrare le tue competenze nei seguenti ambiti: scrivere comandi gcloud e utilizzare Cloud Shell, creare ed eseguire il deployment di macchine virtuali in Compute Engine e configurare bilanciatori del carico di rete e HTTP. Un badge delle competenze è un badge digitale esclusivo, assegnato da Google Cloud come riconoscimento della tua competenza nell'uso dei prodotti e servizi Google Cloud dopo aver messo alla prova la tua cacpacità di applicare le tue conoscenze in un ambiente interattivo pratico. Completa questo corso e il Challenge Lab conclusivo per ricevere un badge delle competenze da condividere con la tua rete.

Scopri di più

Completa il corso intermedio con badge delle competenze Crea l'infrastruttura con Terraform su Google Cloud per dimostrare le tue competenze nei seguenti ambiti: principi di Infrastructure as Code (IaC) utilizzando Terraform, provisioning e gestione di risorse Google Cloud con configurazioni Terraform, gestione efficace dello stato (locale e remoto) e modularizzazione del codice Terraform per la riusabilità e l'organizzazione. I badge delle competenze convalidano le tue conoscenze pratiche su prodotti specifici attraverso lab pratici e Challenge Lab di valutazione. Guadagna un badge completando un corso o partecipa subito al Challenge Lab per ricevere il tuo badge oggi stesso. I badge dimostrano la tua competenza, migliorano il tuo profilo professionale e, in ultima analisi, aumentano le opportunità di carriera. Visita il tuo profilo per monitorare i badge che hai guadagnato.

Scopri di più

Ottieni un badge delle competenze completando il corso Configura un ambiente di sviluppo di app su Google Cloud, in cui imparerai a creare e connettere un'infrastruttura cloud incentrata sull'archiviazione utilizzando le funzionalità di base delle seguenti tecnologie: Cloud Storage, Identity and Access Management, Cloud Functions e Pub/Sub. Un badge delle competenze è un badge digitale esclusivo rilasciato da Google Cloud come riconoscimento della tua competenza nell'uso di prodotti e servizi Google Cloud dopo aver messo alla prova la tua capacità di applicare le tue conoscenze in un ambiente interattivo pratico. Completa questo corso e il Challenge Lab conclusivo per ricevere un badge delle competenze da condividere con la tua rete.

Scopri di più

This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.

Scopri di più

This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.

Scopri di più

Ti diamo il benvenuto nel corso Introduzione a Google Kubernetes Engine. Se ti interessa Kubernetes, un livello software che si trova tra le tue applicazioni e la tua infrastruttura hardware, allora sei nel posto giusto. Google Kubernetes Engine ti offre Kubernetes come servizio gestito su Google Cloud. L'obiettivo di questo corso è illustrare le nozioni di base di Google Kubernetes Engine, o GKE, come viene comunemente chiamato, e come containerizzare le applicazioni e farle funzionare su Google Cloud. Il corso inizia con un'introduzione di base a Google Cloud, seguita da una panoramica dei container e di Kubernetes, dell'architettura di Kubernetes e delle operazioni di Kubernetes.

Scopri di più

Questo corso accelerato on demand illustra ai partecipanti l'infrastruttura completa e flessibile e i servizi di piattaforma forniti da Google Cloud. Attraverso una combinazione di videolezioni, demo e lab pratici, i partecipanti potranno esplorare gli elementi delle soluzioni, tra cui interconnessione sicura delle reti, bilanciamento del carico, scalabilità automatica, automazione dell'infrastruttura e servizi gestiti.

Scopri di più

Questo corso accelerato on demand illustra ai partecipanti l'infrastruttura e i servizi di piattaforma flessibili e completi di Google Cloud con particolare attenzione a Compute Engine. Attraverso una combinazione di videolezioni, demo e lab pratici, i partecipanti potranno esplorare gli elementi delle soluzioni, tra cui i componenti dell'infrastruttura come reti, sistemi e servizi per applicazioni, ed eseguirne il deployment. Questo corso tratta inoltre del deployment di soluzioni pratiche quali, ad esempio, chiavi di crittografia fornite dal cliente, gestione di sicurezza e accessi, quote e fatturazione, monitoraggio delle risorse.

Scopri di più

Questo corso accelerato on demand illustra ai partecipanti l'infrastruttura e i servizi di piattaforma flessibili e completi di Google Cloud con particolare attenzione a Compute Engine. Attraverso una combinazione di videolezioni, demo e lab pratici, i partecipanti potranno esplorare gli elementi delle soluzioni, tra cui i componenti dell'infrastruttura come reti, macchine virtuali e servizi per applicazioni, ed eseguirne il deployment. Imparerai a utilizzare Google Cloud mediante la console e Cloud Shell. Scoprirai inoltre il ruolo del Cloud Architect, gli approcci alla progettazione dell'infrastruttura e la configurazione del networking virtuale con VPC (Virtual Private Cloud), progetti, reti, subnet, indirizzi IP, route e regole firewall.

Scopri di più

Google Cloud Fundamentals: Core Infrastructure introduce concetti e terminologia importanti per lavorare con Google Cloud. Attraverso video e lab pratici, questo corso presenta e confronta molti dei servizi di computing e archiviazione di Google Cloud, insieme a importanti strumenti di gestione delle risorse e dei criteri.

Scopri di più

This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.

Scopri di più