가입 로그인

Atul Joshi

회원 가입일: 2021

프로덕션 머신러닝 시스템 Earned 3월 8, 2022 EST
End-to-End Machine Learning with TensorFlow on Google Cloud Earned 3월 6, 2022 EST
기업의 머신러닝 Earned 3월 2, 2022 EST
특성 추출 Earned 1월 16, 2022 EST
Google Cloud에서 Keras를 사용해 ML 모델을 빌드, 학습, 배포하기 Earned 1월 11, 2022 EST
How Google Does Machine Learning - 한국어 Earned 12월 4, 2021 EST
Google Cloud Big Data and Machine Learning Fundamentals - 한국어 Earned 12월 3, 2021 EST

이 과정에서는 프로덕션 환경에서 고성능 ML 시스템을 빌드하기 위한 구성요소와 권장사항을 자세히 살펴봅니다. 정적 학습, 동적 학습, 정적 추론, 동적 추론, 분산 TensorFlow, TPU 등 고성능 ML 시스템 빌드와 관련된 일반적인 고려사항을 다룹니다. 이 과정에서는 정확한 예측 능력 외에도 양질의 ML 시스템을 만드는 특성을 탐구하는 데 중점을 둡니다.

자세히 알아보기

One of the best ways to review something is to work with the concepts and technologies that you have learned. So, this course is set up as a workshop and in this workshop, you will do End-to-End Machine Learning with TensorFlow on Google Cloud Platform. It involves building an end-to-end model from data exploration all the way to deploying an ML model and getting predictions from it. This is the first course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Production Machine Learning Systems course.

자세히 알아보기

이 과정에서는 우수사례를 중심으로 ML 워크플로에 대한 실질적인 접근 방식을 취합니다. ML팀은 다양한 ML 비즈니스 요구사항과 사용 사례에 직면합니다. 팀에서는 데이터 관리 및 거버넌스에 필요한 도구를 이해하고 가장 효과적으로 데이터 전처리에 접근하는 방식을 파악해야 합니다. 두 가지 사용 사례를 위한 ML 모델을 빌드하는 세 가지 옵션이 팀에 제시됩니다. 이 과정에서는 목표를 달성하기 위해 AutoML, BigQuery ML 또는 커스텀 학습을 사용하는 이유를 설명합니다.

자세히 알아보기

이 과정에서는 Vertex AI Feature Store 사용의 이점, ML 모델의 정확성을 개선하는 방법, 가장 유용한 특성을 만드는 데이터 열을 찾는 방법을 살펴봅니다. 이 과정에는 BigQuery ML, Keras, TensorFlow를 사용한 특성 추출에 관한 콘텐츠와 실습도 포함되어 있습니다.

자세히 알아보기

이 과정에서는 TensorFlow 및 Keras를 사용한 ML 모델 빌드, ML 모델의 정확성 개선, 사용 사례 확장을 위한 ML 모델 작성에 대해 다룹니다.

자세히 알아보기

Google Cloud에서 머신러닝을 구현하기 위한 권장사항에는 어떤 것이 있을까요? Vertex AI란 무엇이고, 이 플랫폼을 사용하여 코드는 한 줄도 작성하지 않고 AutoML 머신러닝 모델을 빠르게 빌드, 학습, 배포하려면 어떻게 해야 할까요? 머신러닝이란 무엇이며 어떤 종류의 문제를 해결할 수 있을까요? Google은 머신러닝을 조금 다른 방식으로 바라봅니다. Google이 머신러닝과 관련하여 중요하게 생각하는 것은 관리형 데이터 세트를 위한 통합 플랫폼과 특징 저장소를 제공하고, 코드를 작성하지 않고도 머신러닝 모델을 빌드, 학습, 배포할 방법을 제공하고, 데이터에 라벨을 지정하고, TensorFlow, scikit-learn, Pytorch, R 등과 같은 프레임워크를 사용하여 Workbench 노트북을 만들 수 있도록 지원하는 것입니다. Google의 Vertex AI 플랫폼에는 커스텀 모델을 학습시키고, 구성요소 파이프라인을 빌드하고, 온라인 및 일괄 예측을 실행하는 기능이 포함되어 있습니다. 후보 사용 사례를 머신러닝으로 구동되도록 변환하는 5단계를 살펴보고, 단계를 건너뛰지 않는 것이 중요한 이유를 알아봅니다. 마지막으로, 머신러닝이 증폭시킬 수 있는 편향과 이를 인식할 방법을 살펴봅니다.

자세히 알아보기

이 과정에서는 데이터-AI 수명 주기를 지원하는 Google Cloud 빅데이터 및 머신러닝 제품과 서비스를 소개합니다. Google Cloud에서 Vertex AI를 사용하여 빅데이터 파이프라인 및 머신러닝 모델을 빌드하는 프로세스, 문제점 및 이점을 살펴봅니다.

자세히 알아보기