加入 登录

Sudhanshu .

成为会员时间:2022

青铜联赛

10725 积分
Machine Learning Operations (MLOps): Getting Started Earned Feb 8, 2024 EST
Machine Learning in the Enterprise Earned Feb 6, 2024 EST
Feature Engineering Earned Jan 5, 2024 EST
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Dec 26, 2023 EST
Launching into Machine Learning Earned Oct 5, 2023 EDT
Google Cloud 的 AI 和機器學習服務簡介 Earned Sep 29, 2023 EDT
How Google Does Machine Learning Earned Aug 5, 2023 EDT
Architecting with Google Kubernetes Engine: Workloads Earned May 9, 2023 EDT
Architecting with Google Kubernetes Engine: Production Earned May 1, 2023 EDT
Architecting with Google Kubernetes Engine: Foundations - 繁體中文 Earned Apr 29, 2023 EDT
開始使用 Google Kubernetes Engine Earned Apr 29, 2023 EDT
彈性的 Google Cloud 基礎架構:資源調度與自動化 Earned Apr 22, 2023 EDT
重要的 Google Cloud 基礎架構:核心服務 Earned Apr 17, 2023 EDT
重要的 Google Cloud 基礎架構:基本概念 Earned Apr 15, 2023 EDT
Google Cloud 基礎知識:核心基礎架構 Earned Apr 11, 2023 EDT
Serverless Data Processing with Dataflow: Foundations Earned Feb 27, 2023 EST
Smart Analytics, Machine Learning, and AI on Google Cloud Earned Feb 27, 2023 EST
Build Streaming Data Pipelines on Google Cloud Earned Feb 25, 2023 EST
Build Data Lakes and Data Warehouses on Google Cloud Earned Jan 25, 2023 EST
Google Cloud Big Data and Machine Learning Fundamentals Earned Nov 15, 2022 EST

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

了解详情

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

了解详情

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

了解详情

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

了解详情

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

了解详情

本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。

了解详情

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

了解详情

In "Architecting with Google Kubernetes Engine- Workloads", you'll embark on a comprehensive journey into cloud-native application development. Throughout the learning experience, you'll explore Kubernetes operations, deployment management, GKE networking, and persistent storage. This is the first course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Architecting with Google Kubernetes Engine- Production course.

了解详情

In this course, you'll learn about Kubernetes and Google Kubernetes Engine (GKE) security; logging and monitoring; and using Google Cloud managed storage and database services from within GKE. This is the second course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Reliable Google Cloud Infrastructure: Design and Process course or the Hybrid Cloud Infrastructure Foundations with Anthos course.

了解详情

在 「Google Kubernetes Engine 架構:基礎知識」的課程中,您將復習 Google Cloud 的配置和原則,接著是建立和管理軟體容器簡介和 Kubernetes 架構簡介。 這是 Google Kubernetes Engine 架構系列中的第一項課程。完成此課程後,請註冊 Google Kubernetes Engine 架構:工作負載課程。

了解详情

歡迎參加「開始使用 Google Kubernetes Engine」課程。Kubernetes 是位於應用程式和硬體基礎架構之間的軟體層。如果您對這項技術感興趣,這堂課程可以滿足您的需求。有了 Google Kubernetes Engine,您就能在 Google Cloud 中以代管服務的形式使用 Kubernetes。 本課程的目標在於介紹 Google Kubernetes Engine (常簡稱為 GKE) 的基本概念,以及如何將應用程式容器化,以便在 Google Cloud 中執行。課程首先會初步介紹 Google Cloud,隨後簡介容器、Kubernetes、Kubernetes 架構和 Kubernetes 作業。

了解详情

這堂隨選密集課程會向參加人員說明 Google Cloud 提供的全方位彈性基礎架構和平台服務。這堂課結合了視訊講座、示範和實作研究室,可讓參加人員探索及部署解決方案元素,包括安全地建立互連網路、負載平衡、自動調度資源、基礎架構自動化,以及代管服務。

了解详情

這堂隨選密集課程會向參加人員說明 Google Cloud 提供的全方位彈性基礎架構和平台服務,並將重點放在 Compute Engine。這堂課程結合了視訊講座、示範和實作研究室,可讓參加人員探索及部署解決方案元素,例如網路、系統和應用程式服務等基礎架構元件。另外,這堂課也會介紹如何部署實用的解決方案,包括客戶提供的加密金鑰、安全性和存取權管理機制、配額與帳單,以及資源監控功能。

了解详情

這堂隨選密集課程會向參加人員說明 Google Cloud 提供的全方位彈性基礎架構和平台服務,尤其側重於 Compute Engine。這堂課程結合了視訊講座、示範和實作研究室,可讓參加人員探索及部署解決方案元素,例如網路、虛擬機器和應用程式服務等基礎架構元件。您會瞭解如何透過控制台和 Cloud Shell 使用 Google Cloud。另外,您也能瞭解雲端架構師的職責、基礎架構設計方法,以及具備虛擬私有雲 (VPC)、專案、網路、子網路、IP 位址、路徑和防火牆規則的虛擬網路設定。

了解详情

「Google Cloud 基礎知識:核心基礎架構」介紹了在使用 Google Cloud 時會遇到的重要概念和術語。本課程會透過影片和實作實驗室,介紹並比較 Google Cloud 的多種運算和儲存服務,同時提供重要的資源和政策管理工具。

了解详情

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

了解详情

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

了解详情

In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.

了解详情

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

了解详情

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

了解详情