Unirse Acceder

Sudhanshu .

Miembro desde 2022

Liga de Bronce

10725 puntos
Operaciones de aprendizaje automático (MLOps): Primeros pasos Earned feb 8, 2024 EST
Aprendizaje automático en empresas Earned feb 6, 2024 EST
Ingeniería de atributos Earned ene 5, 2024 EST
Crea, entrena e implementa modelos de AA con Keras en Google Cloud Earned dic 26, 2023 EST
Launching into Machine Learning - Español Earned oct 5, 2023 EDT
Introducción a la IA y el aprendizaje automático en Google Cloud Earned sep 29, 2023 EDT
How Google Does Machine Learning - Español Earned ago 5, 2023 EDT
Diseño de arquitecturas con Google Kubernetes Engine: cargas de trabajo Earned may 9, 2023 EDT
Diseño de arquitecturas con Google Kubernetes Engine: Producción Earned may 1, 2023 EDT
Diseño de arquitecturas con Google Kubernetes Engine: conceptos básicos Earned abr 29, 2023 EDT
Introducción a Google Kubernetes Engine Earned abr 29, 2023 EDT
Infraestructura elástica de Google Cloud: Escalamiento y automatización Earned abr 22, 2023 EDT
Infraestructura esencial de Google Cloud: servicios principales Earned abr 17, 2023 EDT
Infraestructura esencial de Google Cloud: conceptos básicos Earned abr 15, 2023 EDT
Aspectos básicos de Google Cloud: Infraestructura principal Earned abr 11, 2023 EDT
Procesamiento de datos sin servidores con Dataflow: Fundamentos Earned feb 27, 2023 EST
Smart Analytics, Machine Learning, and AI on Google Cloud - Español Earned feb 27, 2023 EST
Creación de sistemas de analíticas en tiempo real resilientes en Google Cloud Earned feb 25, 2023 EST
Modernización de data lakes y almacenes de datos con Google Cloud Earned ene 25, 2023 EST
Google Cloud Big Data and Machine Learning Fundamentals - Español Earned nov 15, 2022 EST

En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.

Más información

En este curso, se aplica un enfoque real en el flujo de trabajo del AA a través de un caso de éxito. Un equipo de AA trabaja con varios requisitos empresariales y casos de uso de AA. El equipo debe comprender las herramientas necesarias para la administración de los datos y considerar el mejor enfoque para su procesamiento previo. Al equipo se le presentan tres opciones con las que puede crear modelos de AA para dos casos de uso. En el curso, se explica por qué el equipo usará AutoML, BigQuery ML o entrenamiento personalizado para lograr sus objetivos.

Más información

En este curso, se exploran los beneficios de utilizar Vertex AI Feature Store, cómo mejorar la exactitud de los modelos de AA y cómo descubrir cuáles columnas de datos producen los atributos más útiles. El curso también incluye contenido y labs sobre la ingeniería de atributos en los que se usan BigQuery ML, Keras y TensorFlow.

Más información

En este curso, se explica cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la exactitud de los modelos de AA y cómo escribir modelos de AA para uso escalado.

Más información

El curso comienza con un debate sobre los datos: cómo mejorar su calidad y cómo realizar análisis exploratorios de ellos. Describimos Vertex AI AutoML y cómo crear, entrenar e implementar un modelo de AA sin escribir una sola línea de código. Conocerás los beneficios de BigQuery ML. Luego, se analiza cómo optimizar un modelo de aprendizaje automático (AA) y cómo la generalización y el muestreo pueden ayudar a evaluar la calidad de los modelos de AA para el entrenamiento personalizado.

Más información

En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.

Más información

¿Cuáles son las prácticas recomendadas para implementar el aprendizaje automático en Google Cloud? ¿Qué es Vertex AI y cómo se puede utilizar la plataforma para crear, entrenar e implementar rápidamente modelos de aprendizaje automático de AutoML sin escribir una sola línea de código? ¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar? Google considera que el aprendizaje automático es diferente: se trata de proporcionar una plataforma unificada para conjuntos de datos administrados, un almacén de atributos, una forma de crear, entrenar e implementar modelos de aprendizaje automático sin escribir una sola línea de código, así como proporcionar la capacidad de etiquetar datos y crear notebooks de Workbench utilizando frameworks como TensorFlow, SciKit-learn, Pytorch, R y otros. Vertex AI Platform también ofrece la posibilidad de entrenar modelos personalizados, crear canalizaciones de componentes y realizar predicciones en línea y por lotes. Además, analiza…

Más información

En Diseño de arquitecturas con Google Kubernetes Engine: cargas de trabajo, te embarcarás en un recorrido completo sobre el desarrollo de aplicaciones nativas de la nube. Durante la experiencia de aprendizaje, explorarás las operaciones de Kubernetes, la administración de implementaciones, las herramientas de redes de GKE y el almacenamiento persistente. Este es el primer curso de la serie Diseño de arquitecturas con Google Kubernetes Engine. Después de completarlo, inscríbete en el curso Diseño de arquitecturas con Google Kubernetes Engine: Producción.

Más información

En este curso, aprenderás sobre la seguridad de Kubernetes y Google Kubernetes Engine (GKE), los registros y la supervisión, y cómo usar los servicios administrados de almacenamiento y de bases de datos de Google Cloud desde GKE. Este es el segundo curso de la serie Diseño de arquitecturas con Google Kubernetes Engine. Después de completar este curso, inscríbase en los cursos Infraestructura confiable de Google Cloud: El diseño y el proceso o Hybrid Cloud Infrastructure Foundations with Anthos.

Más información

En el curso, “Diseño de arquitecturas con Google Kubernetes Engine: conceptos básicos”, obtendrá información sobre el diseño y los principios de Google Cloud, además de una introducción a la creación y administración de contenedores de software y a la arquitectura de Kubernetes.

Más información

Te damos la bienvenida al curso Introducción a Google Kubernetes Engine. Si te interesa Kubernetes, una capa de software ubicada entre tus aplicaciones y la infraestructura de tu hardware, estás en el lugar correcto. Google Kubernetes Engine te ofrece Kubernetes como un servicio administrado en Google Cloud. El objetivo de este curso es presentar los conceptos básicos de Google Kubernetes Engine o GKE, como se conoce comúnmente, y cómo alojar aplicaciones en contenedores y ejecutarlas en Google Cloud. El curso comienza con una introducción básica a Google Cloud, seguida de una descripción general de los contenedores y Kubernetes, la arquitectura de Kubernetes y las operaciones de esta plataforma.

Más información

En este curso acelerado a pedido, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud. A través de una combinación de clases por video, demostraciones y labs prácticos, los participantes exploran y, también, implementan elementos de las soluciones, como la interconexión segura de redes, el balanceo de cargas, el ajuste de escala automático, la automatización de la infraestructura y los servicios administrados.

Más información

En este curso acelerado a pedido, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud, con un enfoque en Compute Engine. Mediante una serie de clases por video, demostraciones y labs prácticos, los participantes pueden explorar y, también, implementar elementos de soluciones, incluidos componentes de infraestructura, como redes, sistemas y servicios de aplicaciones. En este curso, también se aborda la implementación de soluciones prácticas, incluidas las claves de encriptación proporcionadas por el cliente, la administración de seguridad y accesos, las cuotas y la facturación, y la supervisión de recursos.

Más información

En este curso acelerado on demand, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud, con un enfoque en Compute Engine. Mediante una serie de clases por video, demostraciones y labs prácticos, los participantes pueden explorar y, también, implementar elementos de soluciones, incluidos componentes de infraestructura, como redes, máquinas virtuales y servicios de aplicaciones. Aprenderás a usar Google Cloud mediante la consola y Cloud Shell. También te familiarizarás con la función de un arquitecto de nube, enfoques para el diseño de la infraestructura y la configuración de redes virtuales con una nube privada virtual (VPC), proyectos, redes, subredes, direcciones IP, rutas y reglas de firewall.

Más información

Aspectos básicos de Google Cloud: Infraestructura principal presenta conceptos y terminología importantes para trabajar con Google Cloud. Mediante videos y labs prácticos, en este curso se presentan y comparan muchos de los servicios de procesamiento y almacenamiento de Google Cloud, junto con importantes recursos y herramientas de administración de políticas.

Más información

Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.

Más información

La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.

Más información

El procesamiento de datos de transmisión es cada vez más popular, puesto que permite a las empresas obtener métricas en tiempo real sobre las operaciones comerciales. Este curso aborda cómo crear canalizaciones de datos de transmisión en Google Cloud. Pub/Sub se describe para manejar los datos de transmisión entrantes. El curso también aborda cómo aplicar agregaciones y transformaciones a los datos de transmisión con Dataflow y cómo almacenar los registros procesados en BigQuery o Bigtable para analizarlos. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos de transmisión en Google Cloud con QwikLabs.

Más información

Los dos componentes clave de cualquier canalización de datos son los data lakes y los almacenes de datos. En este curso, se destacan los casos de uso de cada tipo de almacenamiento y se analizan en profundidad las soluciones de data lakes y almacenes disponibles en Google Cloud con detalles técnicos. Además, en este curso, se describen el rol del ingeniero en datos, los beneficios de las canalizaciones de datos exitosas para las operaciones comerciales y por qué la ingeniería de datos debe realizarse en un entorno de nube. Este el primer curso de la serie Ingeniería de datos en Google Cloud. Después de completar este curso, inscríbete en el curso Creación de flujos de procesamiento de datos por lotes en Google Cloud.

Más información

En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.

Más información